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General Problem

* Given: Network = Graph G
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* Large, (possibly dynamic) network:
Global view of whole network is not possible

 Computations have to be done at the nodes of the network

* Goal: Solve some given graph-theoretic problem on G by a
distributed algorithm



Specific Problems

 Maximal Independent Set (MIS)
IndependentsetS C V,st. Vv eV \ §, some
neighbor of visinS.
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* Vertex Coloring:
Properly color nodes with few colors
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* Or more general graph labelings



Optimization Problems

* Minimum Dominating Set (MDS)
Minimum S € I/, s.t. Vv € V: v € S or v has at least
one neighborin S
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* Minimum Vertex Cover
Minimum S € V,st. V{iu, v} € E,Sn{u,v}# 0
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Communication Model

* Synchronous message passing model
 Network = graph (nodes: devic~

comm. links) LOC‘AL. ulel Lok
_ Message size & local
* Node have unique IDs resources unbounded

e Time is divided into rounds:

Each node sends message to
each of its neighbors

time complexity = number of rounds



Locality

 What does this have to do with locality?

3 rounds




Locality

Observation:

* Inr rounds of communication (time r), every node
can collect information about r-neighborhood

* No bound on message size:

every node can learn its
complete r-neighborhood in r rounds

— and nothing more...



Distributed Alg.: Alternative View

* For r rounds, all nodes communicate their complete
states to all neighbors

e After r rounds, nodes know r-neighborhood in G

 Compute output (e.g. in or not in MIS/DS) based on
this information (without additional communication)

 Randomized algorithms:
Nodes choose sufficiently many random bits at the
beginning



Local Algorithms

* General question:
— What can be computed locally?
— What can be computed in r rounds?

* Local algorithm:

— Strict: time complexity independent of global parameters
(n: # of nodes, D: diameter, A: largest degree (?))

— Less strict: time complexity almost indep. of global param.
(e.g., polylog(n, A), o(D), ...)



Outline

1) Overview over existing work

2) Example: minimum dominating set

3) Open problems / directions

Goal: Make it interactive ...
... please ask / interrupt!



Classic Results

[Linial; FOCS ‘87, SICOMP ‘92]:
* First paper that explicitly discusses locality
* Major results on distributed coloring:

— 3-coloring ring deterministically: 2(log™ n) rounds
(randomized lower bound in [Naor ‘91])

— 0(A?%)-coloring of arbitrary graphs: 0(log* n) rounds
(A: largest degree of the network)

[Naor, Stockmeyer; STOC ’93, SICOMP ‘95]:
 Some labelings can be computed in const. time

* Labeling problems: Const. round algorithms can be
derandomized



Classic Results

MIS, maximal matching in O(log n) time:
* [Luby; ‘86], [Israeli,ltai; ‘86], [Alon,Babai,ltai; ‘86]
* Algorithms described as PRAM algorithm

By reduction, same is true for (A + 1)-coloring:
e [Linial ’92]



Network Decomposition

 Decomposition of network into colored clusters

.l‘n ba

(\ 2 Parameters:

o—— * d:maximal cluster diameter

* x:number of colors
N




Network Decomposition

Introduced in [Awerbuch,Goldberg,Luby,Plotkin '89]

e deterministic algorithm

 #frounds =d = y = 20(/lognloglogn)

— Note: polylog(n) = 20Uoglogn) ;,0(1) — 76(logn)
Improvement by [Panconesi,Srinivasan ‘95]
+ Det. alg.: #rounds = d = y = 20(Vlogn)

Randomized algorithm [Linial,Saks ‘93]
 #rounds =d = y = O(logn)

Weak = strong decompositions [Awerbuch et al. ‘96]



Using Network Decompositions

Network decompositions give a generic technique:

Compute decomposition
Iterate through the colors

3. For each color, solve partial solutions on clusters in
parallel (clusters of same color are not adjacent)

Example:

* Gives simple deterministic MIS / coloring algorithms
with time complexity 20108 ™)



Local Approximation

Minimum dominating set:
e [Jia,Rajaraman,Suel '02]:
— O(log A)-approximation in O(lognlogA) rounds

e [Kuhn,Wattenhofer '03],[K.,Moscibroda,W. ‘06]:
— O(Al/\/? log A)-approximation in O(7) rounds
0 (log A)-approximation in O (log® A) rounds

— O(nl/" log A)-approximation in O(7) rounds
O (log A)-approximation in O(logn) rounds

e Similar, stronger bounds hold for min. vertex cover,
max. matching



Lower Bounds

[Kuhn,Moscibroda,Wattenhofer '04] + journal subm.

* Inr rounds, min. (fractional) dom. set, min. vertex
cover, max. matching cannot be approx. better than

min {Q(A(l_g)/r), Q (n(1/4‘8)/r2)}

* Constant approximation requires time

min{Q(logA), Q( /logn)}

* Slightly weaker bounds for polylog. approximations

 Same lower bound holds by reduction also for
MIS and maximal matching



The Price of Locality

* How well can a given optimization problem be
approximated if we are only allowed to communicate

for r rounds?

Alternatively: How good can the approximation be if

the decision for every node has to be based on its -
neighborhood

- what is the price of being restricted to locality r?

LOCALITY
#Rounds / Time

<TRADE-OFF>

GLOBAL SOLUTION

Approximation




Lower Bounds

 [GOOs,Hirvonen,Suomela ‘12]:

— Tight approximability lower bounds for constant time
min. edge dominating set algorithms

* [Hirvonen,Suomela '12]:

— Tight time lower bound for maximal matching in
anonymous, k-edge-colored graphs:

Q(A +log* k)

e [GBOs,Suomela DISC ‘12]:

— Approximation scheme for vertex cover in bipartite graphs
requires (log n) rounds



Strictly Local Approximation

* Many tight results for bounded degree graphs and
strictly local algorithms

— Max-min LPs:
[Floréen,Hassinen,Kaski,Suomela '08],[F.,Kaasinen,K.,S. ‘09]

— Vertex cover:
[Astrand et al. ’09], [Astrand,Suomela '10]

— Edge dominating sets:
[Suomela ‘10], [GO06s,Hirvonen,Suomela ‘12]

— Fractional coloring (arbitrary graphs):
[Kuhn ’09], [Hasemann,Hirvonen,Rybicki,Suomela "12]



Distributed Coloring: Recent Progress

* Deterministic algorithms:
— Arboricity [Barenboim,Elkin ‘08]
— Defective coloring [Barenboim,Elkin ‘09], [Kuhn ‘09]
— Combination of ideas lead to surprising new results:

— [Barenboim,Elkin ’10]: A colors in polylog(n) time
O.(A) colors in O(A€ logn) time

— [Barenboim,Elkin ‘11]: slightly better results for edge col.

 Randomized algorithms:
— [SchneiderWattenh. ‘10], [Barenb.,Elkin,Pettie,Schneider ‘12]:
(A + 1)-coloring in time O (20(\/1°g1°g n) + log A)

MIS in time 0(,/10gnlog A)




Distributed Decision

e Distributed decision problem:
— Distributed input vector x (each node gets a part of the input)
— Language L
— Yes-instance (x € L): all nodes have to output yes
— No-instance (x & L): at least one node has to output no

* Introduced in [Fraigniaud,Korman,Peleg ‘11]
— Defines complexity classes LD(t), NLD(t), BPLD(¢, p, q)

— Whether randomization helps depends on the error bounds
— LD(t) &€ NLD(t)



Distributed Decision

 Additional work:

— [Fraigniaud,Halldorson,Korman "12]:
impact of unique identifiers

— [Fraigniaud,Korman,Parter,Peleg; DISC 12]:
more on randomization

* Related problem studied by [G6ds,Suomela ‘11]
— Strictly (non-det.) local algorithms (i.e., t = 0(1))
— Paper studies proof complexity

* Apologies for all the related work | missed...



Outline

1) Overview over existing work

2) Example: minimum dominating set

3) Open problems / directions



Regular Graphs

Use randomization to break symmetries

1.
2.

O\O

All nodes have degree d, start with empty set / o

Add each node with probability ln(d+1)/d+1 o—_¥

—  Exp. number of nodes; "1"@*tV/ \///

Some nodes are not covered
— Simple calc.: Prob. that not covered < 1/, 4 /

— Exp. number of uncovered nodes < "/, 4 3—2 o
— Add all uncovered nodes to dominating set M

o. O
Dominating set of exp. size (1+ln(d+1))n/d+1 \/ Mo
— Each node covers < d + 1 nodes Q%

— Opt. solution ="/, 4



General Networks

Compute probability for each node: Randomized Rounding:
(fractional dominating set) (fractional = integer)

min >z Same algorithm as
i=1
Linear Program: subject to z>1 for regular graphs. |
2> 0 (use computed probablities)
Intuition from greedy algorithm: increases approximation

high degree - larger probability ratio by factor 1 +In(A + 1)



Solving the Linear Program

LLP Approximation LLP Approximation \ ) o,
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Solving Linear Program

* Solution based on network decomposition

* In O(logn) rounds, rand. alg. from [Linial,Saks 93] gives
— Set of non-adjacent O (log n)-diameter clusters
— Every node is in some cluster with const. probability

e Algorithm idea:
— Compute O(logn) such cluster sets (in parallel)
— W.h.p., each node is in ®(logn) clusters
— Solve local LP optimally for each cluster in O(logn) rounds

— Linear combination of all local solutions gives constant
approximation for the global solution in O (logn) rounds



Lower Bound: Intuition

* How to prove a lower bound?

e Let’s look at case r = 2 to get some intuition

* After 1 round, nodes know their neighbors

After 2 rounds, nodes know the neighbors of their
neighbors



Two-Round Lower Bound




Indistinguishability

* |f weignore node IDs:
Node with same view have to make the same decision

 Assume random node ID assignment with IDs from {1,...,N}

* If nodes u and v see same topology up to distance 2 (r):
— Every possible ID assignment is equally probable
— Probability to see a particular ID assignment equal for u and v
— u and v make the same decision with the same probability p

* Deterministic algorithms: 3 node assignment for which
solution is at least as bad as expected value with random
IDs

 Randomized algorithms: Same bound using Yao’s principle



Approximation Ratio Lower Bound

Number of nodes: ar of nodes:

n=0(m?2)

Approximation ratio of any
2-round minimum dominating set
algorithm is

Q2 (vn)

Red node joins:
|DSgpr| =

Red node

des join w. prob. p,
ed approx. ratio o.:

If red node
Expected approx. rc

m m3
a>(1-p)- €9((1-p)Vn) a>"" € Q(pvn)




General Case

* We use vertex cover instead of dominating set

e And a more involved construction...




Results, Dominating Set

[Kuhn,Moscibroda,Wattenhofer ‘06]:

— O(Al/r log A)-approximation in O(r?) rounds
0 (log A)-approximation in O (log? A) rounds

— O(nl/r log A)-approximation in O(r) rounds
O (log A)-approximation in O(logn) rounds

[Kuhn,Moscibroda,Wattenhofer '04]:

— In r rounds, approximation ratio is at least
min {Q(A(l—é‘)/r)’ (0) (n(1/4_€)/r2)}

— Time to get O (log A)-approximation:

5
log A logn

in < () , Q)
i <loglog A) \ loglogn
\

J



Outline

1) Overview over existing work

2) Example: minimum dominating set

3) Open problems / directions

Goal: Make it interactive ...
... please ask / interrupt!



Deterministic Local Algorithms

e Best deterministic algorithm for many problems has
time complexity 20(V1ogn)

* For example:
— MIS
— (A + 1)-coloring
— (polylogn, poly log n)-decomposition
— Dominating set approximation
— Dominating set rounding
— Approximation scheme for recut?

* All these problems have poly logn randomized sol.!



Long-Standing Open Problem

* |s there really an exponential gap between
deterministic and randomized solutions?

— We haven’t found any faster det. algorithms for >20 years,
so maybe?

* Or more positively:

Can deterministic algorithms in the LOCAL model
be efficiently derandomized?

— Recent progress on deterministic, distributed coloring
might suggest this?



Symmetry Breaking

Hard part seems to be to break symmetry...

Example: Distributed approximation
* Distributed LP algorithms can be derandomized:

— Assumption: algorithm always computes feasible solution

— Output value of a node of an r-round randomized alg.:
function of inputs/rand. bits/topology of r-neighborhood

— Possible to compute expectation of output value
(deterministically)

— Expected output values give feasible solution for LP
— Approximation = expected approximation of rand. alg.

 Makes LP relaxation an attractive approach for distr. alg.



Cost of Symmetry Breaking?

 Randomization is a natural strategy to break symm.
* |s it necessary to do it efficiently?

 What is the cost of randomized symmetry breaking?

— The Q(,/log n) lower bounds from [KMW ’04] are about
approximation and not about breaking symmetry

— MIS lower bound merely a corollary
— Lower bound does not seem to apply to coloring
— (A 4 1)-coloring can be approximated very efficiently!



Distributed Complexity Theory

e Certainly a very interesting direction...

* Very promising work on local decision

 What about more standard distributed computations

— In the sequential world, decision problems capture most of
what we want to understand

— This does not seem to be the case in the distributed context



Beyond the LOCAL model

 What if we cannot send arbitrarily large messages?

* Many efficient local algorithms are based on techniques
like network decompositions
— Pretty brute-force approach
— Alg. often communication and computation intensive

— Simpler, slower (but still very local) algorithms might exist,
e.g., dominating set 0 (logn) vs. 0(log® n)

— Can we prove lower bounds?
e.g., by applying techniques from communication complexity...



Dynamic Networks

* Major practical motivation to study locality:
fault tolerance, robustness in case network changes

e Effect of fault or change can be fixed locally!
— But only if no other changes happen in the meantime...

 What happens if the network is really dynamic?
— Can we still use the same techniques?
— What problems can still be solved locally?
— What is the additional cost?






