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Distr. Computations in Large Networks 

 No node has global information 

 Each node has only partial information about network 

 Yet, nodes have to come up with a global solution! 



• Given: Network = Graph G 

 

 

 

 

• Large, (possibly dynamic) network:  
Global view of whole network is not possible 

 

• Computations have to be done at the nodes of the network 

 

• Goal: Solve some given graph-theoretic problem on G by a 
distributed algorithm  
 

General Problem 



Specific Problems 

• Maximal Independent Set (MIS) 
Independent set 𝑆 ⊆ 𝑉, s.t. ∀𝑣 ∈ 𝑉 ∖ 𝑆, some 
neighbor of 𝑣 is in 𝑆. 

 

 
 

• Vertex Coloring: 
Properly color nodes with few colors 

 

 
 

• Or more general graph labelings 

 



Optimization Problems 

• Minimum Dominating Set (MDS) 
Minimum 𝑆 ⊆ 𝑉, s.t. ∀𝑣 ∈ 𝑉: 𝑣 ∈ 𝑆 or 𝑣 has at least 
one neighbor in 𝑆 

 

 

 
 

• Minimum Vertex Cover 
Minimum 𝑆 ⊆ 𝑉, s.t. ∀ 𝑢, 𝑣 ∈ 𝐸, 𝑆 ∩ 𝑢, 𝑣 ≠ ∅ 

 



• Synchronous message passing model 

• Network = graph (nodes: devices, edges: direct 
comm. links) 

• Node have unique IDs 

• Time is divided into rounds: 

Communication Model 

time complexity = number of rounds 

Each node sends message to 
each of its neighbors 

𝓛𝓞𝓒𝓐𝓛 model: 
Message size & local 

resources unbounded 



Locality 

• What does this have to do with locality? 

1 rounds 2 rounds 3 rounds 



Locality 

Observation: 
 

• In r rounds of communication (time r), every node 
can collect information about r-neighborhood 
 

• No bound on message size: 
 

every node can learn its  
         complete r-neighborhood in r rounds 

 

– and nothing more… 
 



Distributed Alg.: Alternative View 

• For r rounds, all nodes communicate their complete 
states to all neighbors 
 

• After r rounds, nodes know r-neighborhood in G 
 

• Compute output (e.g. in or not in MIS/DS) based on 
this information (without additional communication) 
 

• Randomized algorithms:  
Nodes choose sufficiently many random bits at the 
beginning 

 



Local Algorithms 

• General question: 

– What can be computed locally? 

– What can be computed in 𝑟 rounds? 

 

• Local algorithm: 

– Strict: time complexity independent of global parameters 
(𝑛: # of nodes, 𝐷: diameter, Δ: largest degree (?)) 

– Less strict: time complexity almost indep. of global param. 
(e.g., polylog(𝑛, Δ), 𝑜(𝐷), …) 



Outline 

1) Overview over existing work 

 

2) Example: minimum dominating set 

 

3) Open problems / directions 

 

 

       Goal: Make it interactive … 
                         … please ask / interrupt! 



Classic Results 

[Linial; FOCS ‘87, SICOMP ‘92]: 

• First paper that explicitly discusses locality 

• Major results on distributed coloring: 

– 3-coloring ring deterministically: Ω(log∗ 𝑛) rounds 
(randomized lower bound in [Naor ‘91]) 

– 𝑂 Δ2 -coloring of arbitrary graphs:  𝑂(log∗ 𝑛) rounds 
(Δ: largest degree of the network) 
 

[Naor, Stockmeyer; STOC ’93, SICOMP ‘95]: 

• Some labelings can be computed in const. time 

• Labeling problems: Const. round algorithms can be 
                                   derandomized 



Classic Results 

MIS, maximal matching in 𝑶(𝐥𝐨𝐠𝒏) time: 

• [Luby; ‘86], [Israeli,Itai; ‘86], [Alon,Babai,Itai; ‘86] 

• Algorithms described as PRAM algorithm 

 

By reduction, same is true for (𝚫 + 𝟏)-coloring: 

• [Linial ’92] 



Network Decomposition 

• Decomposition of network into colored clusters 

2 Parameters: 
• 𝒅: maximal cluster diameter 
• 𝝌: number of colors 



Network Decomposition 

Introduced in [Awerbuch,Goldberg,Luby,Plotkin ’89] 

• deterministic algorithm 

• #rounds = 𝑑 = 𝜒 = 2𝑂 log 𝑛 log log 𝑛  

– Note: polylog 𝑛 = 2𝑂(log log 𝑛), 𝑛Θ 1 = 2Θ log 𝑛  
 

Improvement by [Panconesi,Srinivasan ‘95] 

• Det. alg.: #rounds = 𝑑 = 𝜒 = 2𝑂 log 𝑛  
 

Randomized algorithm [Linial,Saks ‘93] 

• #rounds = 𝑑 = 𝜒 = 𝑂(log 𝑛) 
 

Weak  strong decompositions [Awerbuch et al. ‘96] 



Using Network Decompositions 

Network decompositions give a generic technique: 
 

1. Compute decomposition 

2. Iterate through the colors 

3. For each color, solve partial solutions on clusters in 
parallel (clusters of same color are not adjacent) 

 

Example: 

• Gives simple deterministic MIS / coloring algorithms 

with time complexity 2𝑂( log 𝑛) 



Local Approximation 

Minimum dominating set: 

• [Jia,Rajaraman,Suel ’02]: 

– 𝑂(log Δ)-approximation in 𝑂(log 𝑛 log Δ) rounds 
 

• [Kuhn,Wattenhofer ’03],[K.,Moscibroda,W. ‘06]: 

– 𝑂(Δ
1

𝑟 log Δ)-approximation in 𝑂(𝑟) rounds 
𝑂(log Δ)-approximation in 𝑂(log2 Δ) rounds 

– 𝑂(𝑛
1
𝑟 log Δ)-approximation in 𝑂(𝑟) rounds 

𝑂(log Δ)-approximation in 𝑂(log 𝑛) rounds 
 

• Similar, stronger bounds hold for min. vertex cover, 
max. matching 



Lower Bounds 

[Kuhn,Moscibroda,Wattenhofer ’04] + journal subm. 

• In 𝑟 rounds, min. (fractional) dom. set, min. vertex 
cover, max. matching cannot be approx. better than 
 

𝐦𝐢𝐧 𝛀 𝜟 𝟏−𝜺 𝒓 , 𝛀 𝒏
𝟏
𝟒 −𝜺 𝒓𝟐  

 

• Constant approximation requires time 
 

𝐦𝐢𝐧 𝛀 𝐥𝐨𝐠𝚫 ,𝛀 𝐥𝐨𝐠𝒏  
 

• Slightly weaker bounds for polylog. approximations 

• Same lower bound holds by reduction also for 
MIS and maximal matching 



The Price of Locality 

• How well can a given optimization problem be 
approximated if we are only allowed to communicate 
for 𝑟 rounds? 
 

• Alternatively: How good can the approximation be if 
the decision for every node has to be based on its 𝑟-
neighborhood 
 

 what is the price of being restricted to locality 𝑟? 

TRADE-OFF LOCALITY 
#Rounds / Time 

GLOBAL SOLUTION 
Approximation 



Lower Bounds 

• [Göös,Hirvonen,Suomela ‘12]: 

– Tight approximability lower bounds for constant time 
min. edge dominating set algorithms 

 

• [Hirvonen,Suomela ’12]: 

– Tight time lower bound for maximal matching in 
anonymous, 𝑘-edge-colored graphs: 
 

𝛀 𝚫 + 𝐥𝐨𝐠∗ 𝒌  
 

• [Göös,Suomela DISC ‘12]: 

– Approximation scheme for vertex cover in bipartite graphs 
requires 𝛀(𝐥𝐨𝐠𝒏) rounds 

 



Strictly Local Approximation 

• Many tight results for bounded degree graphs and 
strictly local algorithms 

– Max-min LPs: 
[Floréen,Hassinen,Kaski,Suomela ’08],[F.,Kaasinen,K.,S. ‘09] 

– Vertex cover: 
[Åstrand et al. ’09], [Åstrand,Suomela ’10] 

– Edge dominating sets: 
[Suomela ‘10], [Göös,Hirvonen,Suomela ‘12] 

– Fractional coloring (arbitrary graphs): 
[Kuhn ’09], [Hasemann,Hirvonen,Rybicki,Suomela ’12] 

 



Distributed Coloring: Recent Progress 

• Deterministic algorithms: 

– Arboricity [Barenboim,Elkin ‘08] 

– Defective coloring [Barenboim,Elkin ‘09], [Kuhn ‘09] 

– Combination of ideas lead to surprising new results: 

– [Barenboim,Elkin ’10]: Δ1+𝑜(1) colors in polylog(𝑛) time 
                                         𝑂𝜖(Δ) colors in 𝑂 Δ𝜖 log 𝑛  time 

– [Barenboim,Elkin ‘11]: slightly better results for edge col. 
 

• Randomized algorithms: 

– [Schneider,Wattenh. ‘10], [Barenb.,Elkin,Pettie,Schneider ‘12]: 

(Δ + 1)-coloring in time 𝑂 2𝑂 log log 𝑛 + log Δ  

MIS in time 𝑂 log 𝑛 log Δ  



Distributed Decision 

• Distributed decision problem: 

– Distributed input vector 𝒙 (each node gets a part of the input) 

– Language ℒ 

– Yes-instance (𝒙 ∈ ℒ): all nodes have to output yes 

– No-instance (𝒙 ∉ ℒ):  at least one node has to output no 

 

• Introduced in [Fraigniaud,Korman,Peleg ‘11] 

– Defines complexity classes LD(𝑡), NLD 𝑡 , BPLD(𝑡, 𝑝, 𝑞) 

– Whether randomization helps depends on the error bounds 

– LD(𝑡) ∉ NLD(𝑡) 



Distributed Decision 

• Additional work: 

– [Fraigniaud,Halldorson,Korman ’12]: 
impact of unique identifiers 

– [Fraigniaud,Korman,Parter,Peleg; DISC 12]: 
more on randomization 

 

• Related problem studied by [Göös,Suomela ‘11] 

– Strictly (non-det.) local algorithms (i.e., 𝑡 = 𝑂(1)) 

– Paper studies proof complexity 

 

• Apologies for all the related work I missed… 



Outline 

1) Overview over existing work 

 

2) Example: minimum dominating set 

 

3) Open problems / directions 

 



Use randomization to break symmetries 
 

1. All nodes have degree d, start with empty set 

2. Add each node with probability  ln(𝑑+1) 𝑑+1  

– Exp. number of nodes: 𝑛⋅ln(𝑑+1) 𝑑+1   

3. Some nodes are not covered 

– Simple calc.: Prob. that not covered < 1
𝑑+1  

– Exp. number of uncovered nodes < 𝑛
𝑑+1  

– Add all uncovered nodes to dominating set 
 

4. Dominating set of exp. size 
𝟏+𝐥𝐧 𝒅+𝟏 𝒏

𝒅+𝟏
  

– Each node covers ≤ 𝑑 + 1 nodes 

– Opt. solution ≥ 𝑛
𝑑+1  

Regular Graphs 



General Networks 

 

Randomized Rounding: 
(fractional  integer) 

 
 
 
 
 

Same algorithm as  
for regular graphs 

(use computed probablities) 
 

increases approximation  
ratio by factor 1 + ln(Δ + 1) 

 

Compute probability for each node: 
(fractional dominating set) 

 
 
 
 
 
 
 
 
 

Intuition from greedy algorithm: 
high degree  larger probability 
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Linear Program: 



Solving the Linear Program 



Solving Linear Program 

• Solution based on network decomposition 
 

• In 𝑂(log 𝑛) rounds, rand. alg. from [Linial,Saks ’93] gives 

– Set of non-adjacent 𝑂(log 𝑛)-diameter clusters 

– Every node is in some cluster with const. probability 
 

• Algorithm idea:  

– Compute 𝑂(log 𝑛) such cluster sets (in parallel) 

– W.h.p., each node is in Θ log 𝑛  clusters 

– Solve local LP optimally for each cluster in 𝑂(log 𝑛) rounds 

– Linear combination of all local solutions gives constant 
approximation for the global solution in 𝑂(log 𝑛) rounds 

 



Lower Bound: Intuition 

• How to prove a lower bound? 

 

• Let’s look at case 𝑟 = 2 to get some intuition 

 

 

• After 1 round, nodes know their neighbors 

 

• After 2 rounds, nodes know the neighbors of their 
neighbors 
 

 



Two-Round Lower Bound 
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same view 



Indistinguishability 

• If we ignore node IDs: 
Node with same view have to make the same decision 
 

• Assume random node ID assignment with IDs from {1,…,N} 

• If nodes u and v see same topology up to distance 2 (𝑟): 
– Every possible ID assignment is equally probable 

– Probability to see a particular ID assignment equal for u and v 

– u and v make the same decision with the same probability 𝑝 
 

• Deterministic algorithms: ∃ node assignment for which 
solution is at least as bad as expected value with random 
IDs 
 

• Randomized algorithms:  Same bound using Yao’s principle 



Approximation Ratio Lower Bound 
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Number of nodes: 
n=(m2) 
 
Red node joins: 
|DSOPT| = 2 
 
Red node does not join: 
|DSOPT| ≥ m 
 
If red node joins with probability p, 
Expected approx. ratio : 
 
 
 

Number of nodes: 
n=(m4) 
 
m3 red nodes 
 
Optimal dom. set: 
|DSOPT| = 2m 
 
 
If red nodes join w. prob. p, 
Expected approx. ratio : 
 
 
 

Approximation ratio of any 
2-round minimum dominating set 

algorithm is 



General Case 

• We use vertex cover instead of dominating set 

 

• And a more involved construction… 



Results, Dominating Set 

[Kuhn,Moscibroda,Wattenhofer ‘06]: 

– 𝑂(Δ
1
𝑟 log Δ)-approximation in 𝑂(𝑟2) rounds 

𝑂(log Δ)-approximation in 𝑂(log2 Δ) rounds 

– 𝑂(𝑛
1
𝑟 log Δ)-approximation in 𝑂(𝑟) rounds 

𝑂(log Δ)-approximation in 𝑂(log 𝑛) rounds 
 

[Kuhn,Moscibroda,Wattenhofer ’04]: 
– In 𝑟 rounds, approximation ratio is at least 

 

min Ω Δ(1−𝜀) 𝑟 , Ω 𝑛
1
4 −𝜀 𝑟2  

 

– Time to get 𝑂(log Δ)-approximation: 
–  

min Ω
log Δ

log log Δ
, Ω

log 𝑛

log log 𝑛
 



Outline 

1) Overview over existing work 

 

2) Example: minimum dominating set 

 

3) Open problems / directions 

 

 

       Goal: Make it interactive … 
                         … please ask / interrupt! 



Deterministic Local Algorithms 

• Best deterministic algorithm for many problems has 

time complexity 2𝑂 log 𝑛  
 

• For example: 

– MIS 

– (Δ + 1)-coloring 

– poly log 𝑛 , poly log 𝑛 -decomposition 

– Dominating set approximation 

– Dominating set rounding 

– Approximation scheme for recut? 
 

• All these problems have poly log 𝑛 randomized sol.! 



Long-Standing Open Problem 

• Is there really an exponential gap between 
deterministic and randomized solutions? 

– We haven’t found any faster det. algorithms for >20 years, 
so maybe? 

 

• Or more positively: 
 
Can deterministic algorithms in the 𝓛𝓞𝓒𝓐𝓛 model 
be efficiently derandomized? 

– Recent progress on deterministic, distributed coloring 
might suggest this? 



Symmetry Breaking 

Hard part seems to be to break symmetry… 
 

Example: Distributed approximation 

• Distributed LP algorithms can be derandomized: 

– Assumption: algorithm always computes feasible solution 

– Output value of a node of an 𝑟-round randomized alg.: 
function of inputs/rand. bits/topology of 𝑟-neighborhood 

– Possible to compute expectation of output value 
(deterministically) 

– Expected output values give feasible solution for LP 

– Approximation = expected approximation of rand. alg. 
 

• Makes LP relaxation an attractive approach for distr. alg. 

 



Cost of Symmetry Breaking? 

• Randomization is a natural strategy to break symm. 

 

• Is it necessary to do it efficiently? 

 

• What is the cost of randomized symmetry breaking? 

– The Ω log 𝑛  lower bounds from [KMW ’04] are about 

approximation and not about breaking symmetry 

– MIS lower bound merely a corollary 

– Lower bound does not seem to apply to coloring 

– Δ + 1 -coloring can be approximated very efficiently! 



Distributed Complexity Theory 

• Certainly a very interesting direction… 

 

• Very promising work on local decision 

 

• What about more standard distributed computations 

– In the sequential world, decision problems capture most of 
what we want to understand 

– This does not seem to be the case in the distributed context  



Beyond the ℒ𝒪𝒞𝒜ℒ model 

• What if we cannot send arbitrarily large messages? 

 

• Many efficient local algorithms are based on techniques 
like network decompositions 

– Pretty brute-force approach 

– Alg. often communication and computation intensive 

– Simpler, slower (but still very local) algorithms might exist, 
e.g., dominating set 𝑂(log 𝑛) vs. 𝑂(log2 𝑛) 

– Can we prove lower bounds? 
e.g., by applying techniques from communication complexity… 



Dynamic Networks 

• Major practical motivation to study locality: 
fault tolerance, robustness in case network changes 
 

• Effect of fault or change can be fixed locally! 

– But only if no other changes happen in the meantime… 

 

• What happens if the network is really dynamic? 

– Can we still use the same techniques? 

– What problems can still be solved locally? 

– What is the additional cost? 




