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Measuring the impact of IDs on local computation

LOCAL model

Nodes are labeled by pairwise distinct IDs (i.e., a non-negative integer)

Nodes perform in synchronous rounds.

At each round, a node u of a graph G = (V ,E):
1 Sends messages to its neighbors in G;
2 Receives the messages sent by its neighbors;
3 Performs some individual computation.
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Measuring the impact of IDs on local computation

Construction task

Definition
A language is a decidable collection of pairs (G, x) where

G = (V ,E) is a graph
x = {x(u) ∈ {0,1}∗, u ∈ V}

Construction tasks for L
Each node u has to compute an output value x(u) ∈ {0,1}∗ such that
(G, x) ∈ L.

Examples
MIS, dominating set, MST, coloring, leader election, etc.

Challenge: symmetry breaking
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Measuring the impact of IDs on local computation

Decision task

Decision tasks for L
Each node u gets an input value x(u) ∈ {0,1}∗, and all nodes have to
collectively decide whether (G, x) ∈ L.

Application
Checking the correctness of results produced by a construction
algorithm
Provide a basic framework for a DC complexity theory

Decision rules
if (G, x) ∈ L, then every node outputs “yes”;
if (G, x) /∈ L, then at least one node outputs “no”.

Remark: symmetry breaking is not much of an issue

6 / 29



Measuring the impact of IDs on local computation

Decision task

Decision tasks for L
Each node u gets an input value x(u) ∈ {0,1}∗, and all nodes have to
collectively decide whether (G, x) ∈ L.

Application
Checking the correctness of results produced by a construction
algorithm
Provide a basic framework for a DC complexity theory

Decision rules
if (G, x) ∈ L, then every node outputs “yes”;
if (G, x) /∈ L, then at least one node outputs “no”.

Remark: symmetry breaking is not much of an issue

6 / 29



Measuring the impact of IDs on local computation

LOCAL model revisited

Equivalence
Any algorithm A running in t = O(1) rounds in the LOCAL model can
be transformed into an algorithm A′ in which every node u:

1 Collects the structure of the ball B(u, t) together with all the inputs
x(v) and identities Id(v) of these nodes

2 Performs some individual computation

Anonymous LOCAL model
An algorithm A running in t = O(1) rounds in the anonymous LOCAL
model is an algorithm in which every node u:

1 Gets a snapshot of the structure of the ball B(u, t) together with all
the inputs x(v) of the nodes in this ball

2 Performs some individual computation
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Measuring the impact of IDs on local computation

Local decision classes

Let t ≥ 0.

LD(t) is the class of all languages that can be decided in t rounds in
the LOCAL model.

LD∗(t) is the class of all languages that can be decided in t rounds in
the anonymous LOCAL model

LD =
⋃
t≥0

LD(t) LD∗ =
⋃
t≥0

LD∗(t)
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Measuring the impact of IDs on local computation

LD versus LD∗

By definition, LD∗ ⊆ LD.

Conjecture:

LD = LD∗

Recall that:
1 IDs are arbitrary
2 Each individual algorithm is... computable
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Measuring the impact of IDs on local computation

Whenever IDs are bounded to be in {1, . . . ,n}

L = {(G, x) : G has at most x nodes}

Observation
L ∈ LD \ LD∗

Algorithm of node v :
If Id(v) ≤ x then output “yes”, else output “no”.

Proof.
L /∈ LD∗ because nodes cannot locally distinguish Cn from Cn′

L ∈ LD ⇐⇒ n ≤ x ⇐⇒ ∀i ≤ n, we have i ≤ x
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Measuring the impact of IDs on local computation

Whenever the local “function” is not computable

Observation
LD = LD∗

Proof.
Let A be a LD algorithm for L.

LD∗ algorithm at node u:
Return “no” if and only if

∃ ID-assignment to the nodes of B(u, t)
for which A returns “no” at u.
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Measuring the impact of IDs on local computation

Objective of the talk

Discuss the issue: LD versus LD∗
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Arguments in favor of LD = LD∗

Outline

1 Measuring the impact of IDs on local computation

2 Arguments in favor of LD = LD∗

3 Arguments against LD = LD∗

4 Conclusion
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Arguments in favor of LD = LD∗

Hereditary languages

Definition
A hereditary language is a language closed under node deletion.

Examples: k -Coloring, Independent set, Planar graphs, Interval
graphs, Forests, Chordal graphs, Cographs, Perfect graphs, etc.

Observation
LD∗ = LD for hereditary languages.
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Arguments in favor of LD = LD∗

Proof

(p,q)-decider

if (G, x) ∈ L, then, with probability ≥ p, all nodes output “yes”;
if (G, x) /∈ L, then, with probability ≥ q, some node(s) outputs “no”.

Theorem (F., Korman, Peleg [FOCS 2011])
In the LOCAL model, if L is hereditary, and there exists a
(p,q)-decider A for L with p2 + q > 1, running in t rounds, then there
exists a deterministic algorithm D for L running in O(t) rounds.

Proof.
A LD algorithm A deciding L is a (1,1)-decider for L.
The algorithm D is in fact anonymous.
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Arguments in favor of LD = LD∗

Bounded-degree and bounded-input instances

As a consequence of [F., Korman, Parter, and Peleg, DISC 2012]:

Observation
LD∗ = LD for languages defined on the set of paths, with a finite set of
input values.

Observation
LD = LD∗ for languages defined on bounded degree graphs, with a
finite set of input values.

Proof.
There are finitely many different balls for instances (G, x) with

deg(G) ≤ ∆

|x(u)| ≤ k for every node u
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Arguments in favor of LD = LD∗

Oracles

Oracle N
For every node u of an n-node graph, n ≤ N(u).

We denote by LD∗N the class of languages that can be decided by a
LD∗ algorithm having access to oracle N.

Observation

LD∗ ⊆ LD ⊆ LD∗N.

Proof.
Let A be a LD algorithm deciding L in t rounds.

LD∗N algorithm at node u:
Return “no” if and only if there exists an ID-assignment to the nodes of
B(u, t) from the range [1,N(u)] for which A returns “no” at u.
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Arguments in favor of LD = LD∗

Local verification class

Certificate y = {y(u) ∈ {0,1}∗,u ∈ V}.

Verification rules
if (G, x) ∈ L, then ∃ certificate y : every node outputs “yes”;
if (G, x) /∈ L, then ∀ certificate y : at least one node outputs “no”.

Applications
Checking the correctness of data structures (e.g., proof-labeling
schemes)
Non-deterministic version of LD (and LD∗)

NLD(t) (resp., NLD∗(t)) is the class of all languages that can be
verified in t rounds in the LOCAL (resp., anonymous LOCAL) model.

NLD =
⋃
t≥0

NLD(t) NLD∗ =
⋃
t≥0

NLD∗(t)
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Arguments in favor of LD = LD∗

Conjecture holds non-deterministically

Theorem
NLD∗ = NLD.

d

c

b

a

d

c

b

a

d

c

b

a
1-local isomorphism

1-lift
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Arguments in favor of LD = LD∗

Proof.
L is t-closed under lift if, for every two instances I, I′ such that I is
t-local isomorphic to I′, we have:

I′ ∈ L ⇒ I ∈ L

If there exists t ≥ 1 such that L is t-closed under lift, then
L ∈ NLD∗.
If L ∈ NLD, then there exists t ≥ 1 such that L is t-closed under
lift.
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Arguments in favor of LD = LD∗

Completeness under anonymous reduction

Definition
L1 is locally reducible to L2 if there exists an algorithm A running in
t = O(1) rounds such that, for every instance (G, x), A produces
out(u) ∈ {0,1}∗ at every node u ∈ V (G), satisfying:

(G, x) ∈ L1 ⇐⇒ (G,out) ∈ L2 .

x(u) = (E(u),S(u))

E(u) is an element (say an integer E(u) ∈ N)
S(u) is a finite collection of sets (say, of subsets of N)

L∗ = {(G, (E ,S)) | ∃v ∈ V (G), ∃S ∈ S(v) s.t. S ⊇ {E(u) | u ∈ V (G)}}.

Theorem (F., Korman, Peleg [FOCS 2011])
L∗ is NLD-complete (for non anonymous local reductions).
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Arguments in favor of LD = LD∗

Essence of the proof (NLD-hardness)

Let (G, x) be an instance for L ∈ NLD, and let Id be an ID-assignment.

E(v) = BG(v , t), together with inputs and IDs,

Let width(v) = 2|Id(v)|+|x(v)|.
Node v first generates all instances (G′, x′) ∈ L where

G′ is a graph with k ≤ width(v) vertices,
x′ is a collection of k input strings of length at most width(v),

For each (G′, x′), node v generates all possible ID-assignments
Id′ to V (G′) such that ∀u ∈ V (G′), |Id′(u)| ≤ width(v).
S = {BG′(u, t), for every node u of (G′, x′)} ∈ S(v).

Claim
(G, x) ∈ L ⇐⇒ (G,out) ∈ L∗.

22 / 29



Arguments against LD = LD∗

Outline

1 Measuring the impact of IDs on local computation

2 Arguments in favor of LD = LD∗
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4 Conclusion
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Arguments against LD = LD∗

Languages with promise

Instances are of the form (G,M) where
G is an n-node graph
M is a Turing machine (the same for all nodes).

The promise:
{(G,M) : M does not stop, or it stops in at most n steps}.

{
Lyes = {(G,M) : M does not stop}
Lno = {(G,M) : M stops in at most n steps}.

Observation
L ∈ LD \ LD∗

Algorithm of node v :
If M does not stop in Id(v) steps

then output “yes”, else output “no”.
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Arguments against LD = LD∗

Bounded IDs: Id(v) ∈ {1, . . . ,nc}

p-counter: C(p) =

000
001
010
011
100
101
110
111
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Arguments against LD = LD∗

p copies of a C(p) vs. 1 copy of a C(p2) for prime p

000000000
001001001
010010010
011011011
100100100
101101101
110110110
111111111

versus

000000000
000000001
000000010
000000011
000000100
000000101
000000110
000000111
000001000

...
...

...
111111100
111111101
111111110
111111111
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Arguments against LD = LD∗

Separation (rough idea)

L = {(G,p) : G = p × C(p).}

L∗ = {(G,p) : G = p × C(p), or G = C(p2).}

One can show that L∗ ∈ LD∗

But one cannot distinguish p × C(p) from C(p2) in LD∗

Observation

If IDs are in {1, . . . ,nc}, then p × C(p) versus C(p2) is in LD.
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Conclusion
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Conclusion

Open problems

LD = LD∗?

Is
⋃

p2+q>1 BPLD(p,q) = LD for non hereditary languages?

Is there a NLD∗-complete problem (for anonymous local
reductions)?

Thank you!
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