To use ID or not to use ID,
is that a question?

Pierre Fraigniaud’

Laboratoire d’Informatique Algorithmique (LIAFA)
CNRS and University Paris Diderot

Workshop on Advances on Distributed Graph Algorithms, Oct 19, 2012

Joint work with
— Mika G&6s (University of Toronto)
— Magnus Halldorsson (Reykjavik University)
— Amos Korman (CNRS and University Paris Diderot)
— Jukka Suomela (University of Helsinki).

1/29

Outline

o Measuring the impact of IDs on local computation
e Arguments in favor of LD = LD*
e Arguments against LD = LD*

0 Conclusion

/29

Measuring the impact of IDs on local computation

Outline

o Measuring the impact of IDs on local computation

/29

LOCAL model

Nodes are labeled by pairwise distinct IDs (i.e., a hon-negative integer)

Nodes perform in synchronous rounds.

At each round, a node u of a graph G = (V, E):
@ Sends messages to its neighbors in G;
©@ Receives the messages sent by its neighbors;
© Performs some individual computation.

Measuring the impact of IDs on local computation

Construction task

Definition

A language is a decidable collection of pairs (G, x) where
@ G=(V,E)isagraph
@ x={x(u) e {0,1}*, ue V}

Construction tasks for £

Each node u has to compute an output value x(u) € {0, 1}* such that
(G,x) € L.

Examples
MIS, dominating set, MST, coloring, leader election, etc.

Challenge: symmetry breaking

Measuring the impact of IDs on local computation

Decision task

Decision tasks for £

Each node u gets an input value x(u) € {0,1}*, and all nodes have to
collectively decide whether (G, x) € L.

Application
@ Checking the correctness of results produced by a construction
algorithm
@ Provide a basic framework for a DC complexity theory

Measuring the impact of IDs on local computation

Decision task

Decision tasks for £

Each node u gets an input value x(u) € {0,1}*, and all nodes have to
collectively decide whether (G, x) € L.

Application
@ Checking the correctness of results produced by a construction
algorithm

@ Provide a basic framework for a DC complexity theory

Decision rules
@ if (G,x) € L, then every node outputs “yes”;
e if (G,x) ¢ L, then at least one node outputs “no”.

Remark: symmetry breaking is not much of an issue

LOCAL model revisited

Equivalence
Any algorithm A running in t = O(1) rounds in the LOC.AL model can
be transformed into an algorithm A’ in which every node u:

@ Collects the structure of the ball B(u, t) together with all the inputs
x(v) and identities Id(v) of these nodes

© Performs some individual computation

LOCAL model revisited

Equivalence
Any algorithm A running in t = O(1) rounds in the LOC.AL model can
be transformed into an algorithm A’ in which every node u:
@ Collects the structure of the ball B(u, t) together with all the inputs
x(v) and identities Id(v) of these nodes
© Performs some individual computation

Anonymous LOCAL model

An algorithm A running in t = O(1) rounds in the anonymous LOCAL
model is an algorithm in which every node u:

@ Gets a snapshot of the structure of the ball B(u, t) together with all
the inputs x(v) of the nodes in this ball

© Performs some individual computation

Measuring the impact of IDs on local computation

Local decision classes

Lett > 0.

LD(t) is the class of all languages that can be decided in t rounds in
the LOCAL model.

Measuring the impact of IDs on local computation

Local decision classes

Lett > 0.

LD(t) is the class of all languages that can be decided in t rounds in
the LOCAL model.

LD*(t) is the class of all languages that can be decided in ¢ rounds in
the anonymous LOC.AL model

Measuring the impact of IDs on local computation

Local decision classes

Lett > 0.

LD(t) is the class of all languages that can be decided in t rounds in
the LOCAL model.

LD*(t) is the class of all languages that can be decided in ¢ rounds in
the anonymous LOC.AL model

LD = | JLD(1) LD* = | JLD*(t)
>0 >0

Measuring the impact of IDs on local computation

LD versus LD*
By definition, LD* C LD.

Conjecture: J

LD = LD*

9/29

Measuring the impact of IDs on local computation

LD versus LD*

By definition, LD* C LD.

Conjecture:

LD = LD*

Recall that:
© IDs are arbitrary
© Each individual algorithm is... computable

/29

Measuring the impact of IDs on local computation

Whenever IDs are bounded to be in {1,...,n}

10/29

Measuring the impact of IDs on local computation

Whenever IDs are bounded to be in {1,...,n}

L ={(G,x) : G has at most x nodes}

Observation
L €LD)\LD*

Algorithm of node v:
If Id(v) < x then output “yes”, else output “no”.

Proof.

L ¢ LD* because nodes cannot locally distinguish C, from C,,
LeELD < n<x < Vi<n, wehavei<x O

10/29

Measuring the impact of IDs on local computation

Whenever the local “function” is not computable

11/29

Whenever the local “function” is not computable

Observation
LD = LD*

Proof.
Let A be a LD algorithm for L.

LD* algorithm at node u:
Return “no” if and only if
3 ID-assignment to the nodes of B(u, t)
for which A returns “no” at u. O

11/29

Objective of the talk

Discuss the issue: LD versus LD*

12/29

Arguments in favor of LD = LD*

Outline

9 Arguments in favor of LD = LD*

13/29

Arguments in favor of LD = LD*

Hereditary languages

Definition
A hereditary language is a language closed under node deletion. J

Examples: k-Coloring, Independent set, Planar graphs, Interval
graphs, Forests, Chordal graphs, Cographs, Perfect graphs, etc.

Observation
LD* = LD for hereditary languages. J

14/29

Arguments in favor of LD = LD*

Proof

(p, q)-decider
e if (G,x) € L, then, with probability > p, all nodes output “yes”;
e if (G,x) ¢ L, then, with probability > g, some node(s) outputs “no”.

15/29

Arguments in favor of LD = LD*
Proof

(p, q)-decider
e if (G,x) € L, then, with probability > p, all nodes output “yes”;
e if (G,x) ¢ L, then, with probability > g, some node(s) outputs “no”.

Theorem (F., Korman, Peleg [FOCS 2011])

In the LOCAL model, if L is hereditary, and there exists a
(p, q)-decider A for L with p? + q > 1, running in t rounds, then there
exists a deterministic algorithm D for L running in O(t) rounds.

15/29

Arguments in favor of LD = LD*
Proof

(p, q)-decider
e if (G,x) € L, then, with probability > p, all nodes output “yes”;
e if (G,x) ¢ L, then, with probability > g, some node(s) outputs “no”.

Theorem (F., Korman, Peleg [FOCS 2011])

In the LOCAL model, if L is hereditary, and there exists a
(p, q)-decider A for L with p? + q > 1, running in t rounds, then there
exists a deterministic algorithm D for L running in O(t) rounds.

Proof.
@ A LD algorithm A deciding £ is a (1, 1)-decider for L.
@ The algorithm D is in fact anonymous.

15/29

Arguments in favor of LD = LD*

Bounded-degree and bounded-input instances

As a consequence of [F., Korman, Parter, and Peleg, DISC 2012]:
Observation

LD* = LD for languages defined on the set of paths, with a finite set of
input values.

16/29

Arguments in favor of LD = LD*

Bounded-degree and bounded-input instances

As a consequence of [F., Korman, Parter, and Peleg, DISC 2012]:

Observation

LD* = LD for languages defined on the set of paths, with a finite set of
input values.

v

Observation

LD = LD* for languages defined on bounded degree graphs, with a
finite set of input values.

Proof.

There are finitely many different balls for instances (G, x) with
@ deg(G) < A
@ |x(u)| < k for every node u

16/29

Arguments in favor of LD = LD*

Oracles

17/29

Arguments in favor of LD = LD*

Oracles

Oracle N
For every node u of an n-node graph, n < N(u). J

We denote by LD*N the class of languages that can be decided by a
LD* algorithm having access to oracle N.

17/29

Arguments in favor of LD = LD*

Oracles

Oracle N
For every node u of an n-node graph, n < N(u). J

We denote by LD*N the class of languages that can be decided by a
LD* algorithm having access to oracle N.

Observation
LD* C LD C LD*N.

Proof.
Let A be a LD algorithm deciding £ in t rounds.

Lp*N algorithm at node u:
Return “no” if and only if there exists an ID-assignment to the nodes of
B(u, t) from the range [1, N(u)] for which A returns “no” at u. O

v

17/29

Local verification class
Certificate y = {y(u) € {0,1}*,u € V}.

Verification rules
@ if (G,x) € L, then 3 certificate y : every node outputs “yes”;
e if (G,x) ¢ L, then V certificate y : at least one node outputs “no”.

18/29

Arguments in favor of LD = LD*

Local verification class
Certificate y = {y(u) € {0,1}*,u € V}.

Verification rules
@ if (G,x) € L, then 3 certificate y : every node outputs “yes”;
e if (G,x) ¢ L, then V certificate y : at least one node outputs “no”.

v

Applications

@ Checking the correctness of data structures (e.g., proof-labeling
schemes)

@ Non-deterministic version of LD (and LD*)

18/29

Arguments in favor of LD = LD*

Local verification class
Certificate y = {y(u) € {0,1}*,u € V}.

Verification rules
@ if (G,x) € L, then 3 certificate y : every node outputs “yes”;
e if (G,x) ¢ L, then V certificate y : at least one node outputs “no”.

v

Applications

@ Checking the correctness of data structures (e.g., proof-labeling
schemes)

@ Non-deterministic version of LD (and LD*)

NLD(t) (resp., NLD*(t)) is the class of all languages that can be
verified in t rounds in the LOCAL (resp., anonymous LOC.AL) model.

NLD = _JNLD(1) NLD* = _ NLD*(t)
t>0 t>0

18/29

Arguments in favor of LD = LD*

Conjecture holds non-deterministically

Theorem
NLD* = NLD. J

19/29

Arguments in favor of LD = LD*

Conjecture holds non-deterministically

Theorem
NLD* = NLD. J

1-local isomorphism

1-lift

19/29

Arguments in favor of LD = LD*

Proof.

@ L is t-closed under liftif, for every two instances /, I such that / is
t-local isomorphic to /', we have:

lelL=1eLl

@ If there exists t > 1 such that £ is t-closed under lift, then
L € NLD*.

@ If £ € NLD, then there exists t > 1 such that £ is t-closed under
lift.

20/29

Arguments in favor of LD = LD*

Completeness under anonymous reduction

Definition

L1 is locally reducible to L5 if there exists an algorithm A running in
t = O(1) rounds such that, for every instance (G, x), .A produces
out(u) € {0,1}* at every node u € V(G), satisfying:

(G,x) € L1 < (G,out) € L, .

21/29

Arguments in favor of LD = LD*

Completeness under anonymous reduction

Definition

L1 is locally reducible to L5 if there exists an algorithm A running in
t = O(1) rounds such that, for every instance (G, x), .A produces
out(u) € {0,1}* at every node u € V(G), satisfying:

(G,x) € L1 < (G,out) € L, .

x(u) = (E(u), S(u))
@ £(u) is an element (say an integer £(u) € N)
@ S(u) is a finite collection of sets (say, of subsets of N)
£ ={(G,(£,8))|3dve V(G), 3Se S(v)st. SO {&(u) |ue V(G)}}.

21/29

Arguments in favor of LD = LD*

Completeness under anonymous reduction

Definition

L1 is locally reducible to L5 if there exists an algorithm A running in
t = O(1) rounds such that, for every instance (G, x), .A produces
out(u) € {0,1}* at every node u € V(G), satisfying:

(G,x) € L1 < (G,out) € L, .

x(u) = (E(u), S(u))
@ £(u) is an element (say an integer £(u) € N)
@ S(u) is a finite collection of sets (say, of subsets of N)
£ ={(G,(£,8))|3dve V(G), 3Se S(v)st. SO {&(u) |ue V(G)}}.

Theorem (F., Korman, Peleg [FOCS 2011])
L* is NLD-complete (for non anonymous local reductions). J

21/29

Essence of the proof (NLD-hardness)

Let (G, x) be an instance for £ € NLD, and let Id be an ID-assignment.
@ &(v) = Bg(v,t), together with inputs and IDs,
o Let width(v) = 2/[dMI+X(v)!,
@ Node v first generates all instances (G',x’) € £ where

e G is a graph with k < width(v) vertices,
e X' is a collection of k input strings of length at most width(v),

@ For each (G, x), node v generates all possible ID-assignments
Id" to V(G') such that Vu € V(G'), |Id'(u)| < width(v).

@ S={Bg(u,t),forevery node uof (G,x)} € S(v).

Claim
(G,x) e L < (G,out) € L. J

22/29

Arguments against LD = LD*

Outline

e Arguments against LD = LD*

23/29

Arguments against LD = LD*

Languages with promise

Instances are of the form (G, M) where
@ Gis an n-node graph
@ M is a Turing machine (the same for all nodes).
The promise:
{(G, M) : M does not stop, or it stops in at most n steps}. J

Lyes = {(G,M): M does not stop}
Lno = {(G,M): M stops in at most n steps}.

24/29

Languages with promise
Instances are of the form (G, M) where

@ Gis an n-node graph
@ M is a Turing machine (the same for all nodes).

The promise:
{(G, M) : M does not stop, or it stops in at most n steps}. J
Lyes = {(G,M): M does not stop}
Lno = {(G,M): M stops in at most n steps}.
Observation
L eLD)\LD*

Algorithm of node v:

If M does not stop in Id(v) steps
then output “yes”, else output “no”.

o
24729

Bounded IDs: Id(v) € {1,...,n°}

000
001
010
011
100
101
110
111

p-counter: C(p) =

25/29

000000000
001001001
010010010
011011011
100100100
101101101
110110110
111111111

p copies of a C(p) vs. 1 copy of a C(p?) for prime p

versus

000000000
000000001
000000010
000000011
000000100
000000101
000000110
000000111
000001000

111111100
111111101
111111110
111111111

26/29

Arguments against LD = LD*

Separation (rough idea)

L=A{(G,p): G=pxC(p).}

L*={(G,p): G=p x C(p), or G= C(p?).}

27/29

Arguments against LD = LD*

Separation (rough idea)

L={(G,p): G=pxC(p).}

L*={(G,p): G=p x C(p), or G= C(p?).}

One can show that £* € LD*

27/29

Arguments against LD = LD*

Separation (rough idea)

L={(G,p): G=pxC(p).}

L*={(G,p): G=p x C(p), or G= C(p?).}

One can show that £* € LD*

But one cannot distinguish p x C(p) from C(p?) in LD*

27/29

Separation (rough idea)

L={(G,p): G=pxC(p).}

L*={(G,p): G=p x C(p), or G= C(p?).}

One can show that £* € LD*

But one cannot distinguish p x C(p) from C(p?) in LD*
Observation
If IDs are in {1,...,n°}, then p x C(p) versus C(p?) is in LD. J

27/29

Conclusion

Outline

o Conclusion

28/29

Conclusion

Open problems

@ LD =LD*?

29/29

Conclusion

Open problems

@ LD =LD*?

® Is g 4-1 BPLD(p, g) = LD for non hereditary languages?

29/29

Open problems

@ LD =LD*?

® Is g 4-1 BPLD(p, g) = LD for non hereditary languages?

@ |s there a NLD*-complete problem (for anonymous local
reductions)?

29/29

Open problems

@ LD =LD*?

® Is g 4-1 BPLD(p, g) = LD for non hereditary languages?

@ |s there a NLD*-complete problem (for anonymous local
reductions)?

Thank you!

29/29

	Measuring the impact of IDs on local computation
	Arguments in favor of LD=LD*
	Arguments against LD=LD*
	Conclusion

