
Distributed Computing on the (Fruit) Fly

Yuval Emek

Distributed Computing Group
ETH Zurich

October 2012

Advances in Distributed Graph Algorithms (ADGA)
Salvador Bahia, Brazil

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 1 / 26

Synopsis

Distributed computing = power & limitations of computation in networks

Our mission: distributed computing in biological cellular networks

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 2 / 26

Synopsis

Distributed computing = power & limitations of computation in networks

Our mission: distributed computing in biological cellular networks

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 2 / 26

Synopsis

Distributed computing = power & limitations of computation in networks

Our mission: distributed computing in biological cellular networks

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 2 / 26

Synopsis

Distributed computing = power & limitations of computation in networks

Our mission: distributed computing in biological cellular networks

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 2 / 26

Motivation

Selection of sensory organ precurser (SOP) cells = solving MIS
[Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph 11]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 3 / 26

1 Cell biology — a short intro

2 Abstract models

3 Networked finite state machines
Results
MIS protocol

4 Conclusions

The structure of cells (eukaryotes)

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 4 / 26

The nucleus

Analogous to central processing unit

Code = DNA

Organized in chromosomes
Strings of nucleotides

Instructions = genes (DNA substrings)

Execution = gene expression

Producing RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state
Controlled by concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 5 / 26

The nucleus

Analogous to central processing unit

Code = DNA

Organized in chromosomes
Strings of nucleotides

Instructions = genes (DNA substrings)

Execution = gene expression

Producing RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state
Controlled by concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 5 / 26

The nucleus

Analogous to central processing unit

Code = DNA

Organized in chromosomes
Strings of nucleotides

Instructions = genes (DNA substrings)

Execution = gene expression

Producing RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state
Controlled by concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 5 / 26

The nucleus

Analogous to central processing unit

Code = DNA

Organized in chromosomes

Strings of nucleotides

Instructions = genes (DNA substrings)

Execution = gene expression

Producing RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state
Controlled by concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 5 / 26

The nucleus

Analogous to central processing unit

Code = DNA

Organized in chromosomes
Strings of nucleotides

Instructions = genes (DNA substrings)

Execution = gene expression

Producing RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state
Controlled by concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 5 / 26

The nucleus

Analogous to central processing unit

Code = DNA

Organized in chromosomes
Strings of nucleotides

Instructions = genes (DNA substrings)

Execution = gene expression

Producing RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state
Controlled by concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 5 / 26

The nucleus

Analogous to central processing unit

Code = DNA

Organized in chromosomes
Strings of nucleotides

Instructions = genes (DNA substrings)

Execution = gene expression

Producing RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state
Controlled by concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 5 / 26

The nucleus

Analogous to central processing unit

Code = DNA

Organized in chromosomes
Strings of nucleotides

Instructions = genes (DNA substrings)

Execution = gene expression

Producing RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state
Controlled by concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 5 / 26

The nucleus

Analogous to central processing unit

Code = DNA

Organized in chromosomes
Strings of nucleotides

Instructions = genes (DNA substrings)

Execution = gene expression

Producing RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state

Controlled by concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 5 / 26

The nucleus

Analogous to central processing unit

Code = DNA

Organized in chromosomes
Strings of nucleotides

Instructions = genes (DNA substrings)

Execution = gene expression

Producing RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state
Controlled by concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 5 / 26

Cell-to-cell communication

All cells communicate

Communication exists on all levels (cell types, organisms, species)

Bonnie Bassler on How bacteria “talk”

Classify according to communication range:

Juxtacrine — direct contact

respects network’s topology

Paracrine, endocrine

out of our scope

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 6 / 26

Cell-to-cell communication

All cells communicate

Communication exists on all levels (cell types, organisms, species)

Bonnie Bassler on How bacteria “talk”

Classify according to communication range:

Juxtacrine — direct contact

respects network’s topology

Paracrine, endocrine

out of our scope

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 6 / 26

Cell-to-cell communication

All cells communicate

Communication exists on all levels (cell types, organisms, species)

Bonnie Bassler on How bacteria “talk”

Classify according to communication range:

Juxtacrine — direct contact

respects network’s topology

Paracrine, endocrine

out of our scope

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 6 / 26

Cell-to-cell communication

All cells communicate

Communication exists on all levels (cell types, organisms, species)

Bonnie Bassler on How bacteria “talk”

Classify according to communication range:

Juxtacrine — direct contact

respects network’s topology

Paracrine, endocrine

out of our scope

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 6 / 26

Cell-to-cell communication

All cells communicate

Communication exists on all levels (cell types, organisms, species)

Bonnie Bassler on How bacteria “talk”

Classify according to communication range:

Juxtacrine — direct contact

respects network’s topology

Paracrine, endocrine

out of our scope

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 6 / 26

Cell-to-cell communication

All cells communicate

Communication exists on all levels (cell types, organisms, species)

Bonnie Bassler on How bacteria “talk”

Classify according to communication range:

Juxtacrine — direct contact

respects network’s topology

Paracrine, endocrine

out of our scope

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 6 / 26

Juxtacrine communication

Delivery of message m from cell s to cell t

1 s produces molecule m
2 m crosses from s to t

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside t

4 Modifies concentration levels in nucleus

5 Affects t’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 7 / 26

Juxtacrine communication

Delivery of message m from cell s to cell t

1 s produces molecule m

2 m crosses from s to t

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside t

4 Modifies concentration levels in nucleus

5 Affects t’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 7 / 26

Juxtacrine communication

Delivery of message m from cell s to cell t

1 s produces molecule m
2 m crosses from s to t

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside t

4 Modifies concentration levels in nucleus

5 Affects t’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 7 / 26

Juxtacrine communication

Delivery of message m from cell s to cell t

1 s produces molecule m
2 m crosses from s to t

gap junction connecting two
cytoplasms

binds to crossmembrane receptor

3 Triggers a signaling cascade inside t

4 Modifies concentration levels in nucleus

5 Affects t’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 7 / 26

Juxtacrine communication

Delivery of message m from cell s to cell t

1 s produces molecule m
2 m crosses from s to t

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside t

4 Modifies concentration levels in nucleus

5 Affects t’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 7 / 26

Juxtacrine communication

Delivery of message m from cell s to cell t

1 s produces molecule m
2 m crosses from s to t

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside t

4 Modifies concentration levels in nucleus

5 Affects t’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 7 / 26

Juxtacrine communication

Delivery of message m from cell s to cell t

1 s produces molecule m
2 m crosses from s to t

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside t

4 Modifies concentration levels in nucleus

5 Affects t’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 7 / 26

Juxtacrine communication

Delivery of message m from cell s to cell t

1 s produces molecule m
2 m crosses from s to t

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside t

4 Modifies concentration levels in nucleus

5 Affects t’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 7 / 26

Juxtacrine communication

Delivery of message m from cell s to cell t

1 s produces molecule m
2 m crosses from s to t

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside t

4 Modifies concentration levels in nucleus

5 Affects t’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 7 / 26

Juxtacrine communication

Delivery of message m from cell s to cell t

1 s produces molecule m
2 m crosses from s to t

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside t

4 Modifies concentration levels in nucleus

5 Affects t’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 7 / 26

1 Cell biology — a short intro

2 Abstract models

3 Networked finite state machines
Results
MIS protocol

4 Conclusions

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation
Communication too strong

large messages (size grows with n)

independent messages to/from each neighbor

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 8 / 26

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

large messages (size grows with n)

independent messages to/from each neighbor

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 8 / 26

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

large messages (size grows with n)

independent messages to/from each neighbor

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 8 / 26

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

large messages (size grows with n)

independent messages to/from each neighbor

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 8 / 26

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

large messages (size grows with n)

independent messages to/from each neighbor

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 8 / 26

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

large messages (size grows with n)

independent messages to/from each neighbor

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 8 / 26

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

large messages (size grows with n)

independent messages to/from each neighbor

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 8 / 26

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

large messages (size grows with n)

independent messages to/from each neighbor

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 8 / 26

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

m1

m2

m3

m4

Communication too strong

large messages (size grows with n)

independent messages to/from each neighbor

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 8 / 26

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

m1

m2

m3

m4

Communication too strong

large messages (size grows with n)

independent messages to/from each neighbor

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 8 / 26

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong �

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 9 / 26

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

b

b
b

b

Local computation too strong �

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 9 / 26

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong �

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 9 / 26

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps b

b

Local computation too strong �

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 9 / 26

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong

�

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 9 / 26

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong

�

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 9 / 26

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong �

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 9 / 26

Finite state machines (a.k.a. automata)

Finite (fixed) collection of states

q(t + 1)←− q(t), signals(t)

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 10 / 26

Finite state machines (a.k.a. automata)

Finite (fixed) collection of states

q(t + 1)←− q(t), signals(t)

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 10 / 26

Finite state machines (a.k.a. automata)

Finite (fixed) collection of states

q(t + 1)←− q(t), signals(t)

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 10 / 26

Finite state machines (a.k.a. automata)

Finite (fixed) collection of states

q(t + 1)←− q(t), signals(t)

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 10 / 26

Finite state machines (a.k.a. automata)

Finite (fixed) collection of states

q(t + 1)←− q(t), signals(t)

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 10 / 26

Finite state machines (a.k.a. automata)

Finite (fixed) collection of states

q(t + 1)←− q(t), signals(t)

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 10 / 26

Finite state machines (a.k.a. automata)

Finite (fixed) collection of states

q(t + 1)←− q(t), signals(t)

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 10 / 26

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology
Synchronous environment

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 11 / 26

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology
Synchronous environment

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 11 / 26

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology
Synchronous environment

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 11 / 26

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology
Synchronous environment

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 11 / 26

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology
Synchronous environment

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 11 / 26

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life

Digital physics Biological processes

Highly regular topology
Synchronous environment

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 11 / 26

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics

Biological processes

Highly regular topology
Synchronous environment

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 11 / 26

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology
Synchronous environment

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 11 / 26

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology

Synchronous environment

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 11 / 26

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology
Synchronous environment

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 11 / 26

1 Cell biology — a short intro

2 Abstract models

3 Networked finite state machines
Results
MIS protocol

4 Conclusions

nFSM

Every node is an FSM

Communication based on transmissions:
same message delivered to all neighbors

Constant size messages

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|degree(u)

Should be fixed in an FSM!
How does u interpret the content of its ports?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 12 / 26

nFSM

Every node is an FSM

Communication based on transmissions:
same message delivered to all neighbors

Constant size messages

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|degree(u)

Should be fixed in an FSM!
How does u interpret the content of its ports?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 12 / 26

nFSM

Every node is an FSM

Communication based on transmissions:
same message delivered to all neighbors

Constant size messages

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|degree(u)

Should be fixed in an FSM!
How does u interpret the content of its ports?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 12 / 26

nFSM

Every node is an FSM

Communication based on transmissions:
same message delivered to all neighbors

Constant size messages

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|degree(u)

Should be fixed in an FSM!
How does u interpret the content of its ports?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 12 / 26

nFSM

Every node is an FSM

Communication based on transmissions:
same message delivered to all neighbors

Constant size messages

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|degree(u)

Should be fixed in an FSM!
How does u interpret the content of its ports?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 12 / 26

nFSM

Every node is an FSM

Communication based on transmissions:
same message delivered to all neighbors

Constant size messages

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|degree(u)

Should be fixed in an FSM!
How does u interpret the content of its ports?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 12 / 26

nFSM

Every node is an FSM

Communication based on transmissions:
same message delivered to all neighbors

Constant size messages

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|degree(u)

Should be fixed in an FSM!
How does u interpret the content of its ports?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 12 / 26

nFSM

Every node is an FSM

Communication based on transmissions:
same message delivered to all neighbors

Constant size messages

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|degree(u)

Should be fixed in an FSM!
How does u interpret the content of its ports?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 12 / 26

nFSM

Every node is an FSM

Communication based on transmissions:
same message delivered to all neighbors

Constant size messages

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|degree(u)

Should be fixed in an FSM!
How does u interpret the content of its ports?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 12 / 26

nFSM

Every node is an FSM

Communication based on transmissions:
same message delivered to all neighbors

Constant size messages

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|degree(u)

Should be fixed in an FSM!

How does u interpret the content of its ports?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 12 / 26

nFSM

Every node is an FSM

Communication based on transmissions:
same message delivered to all neighbors

Constant size messages

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|degree(u)

Should be fixed in an FSM!
How does u interpret the content of its ports?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 12 / 26

The one-two-many principle

Each state q ∈ Q is associated with a query letter σ = σ(q) ∈ Σ

When in state q, node u cares only about the number πσ of
appearances of σ in its ports (currently)

possible signals = degree(u) + 1

πσ calculated by the one-two-many principle:

isolated cultures developed counting systems that don’t go beyond 2

Walpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the protocol)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b

Transition function of the FSM:
δ : Q × {0, 1, . . . , b − 1,≥b} → Q × Σ

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 13 / 26

The one-two-many principle

Each state q ∈ Q is associated with a query letter σ = σ(q) ∈ Σ

When in state q, node u cares only about the number πσ of
appearances of σ in its ports (currently)

possible signals = degree(u) + 1

πσ calculated by the one-two-many principle:

isolated cultures developed counting systems that don’t go beyond 2

Walpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the protocol)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b

Transition function of the FSM:
δ : Q × {0, 1, . . . , b − 1,≥b} → Q × Σ

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 13 / 26

The one-two-many principle

Each state q ∈ Q is associated with a query letter σ = σ(q) ∈ Σ

When in state q, node u cares only about the number πσ of
appearances of σ in its ports (currently)

possible signals = degree(u) + 1

πσ calculated by the one-two-many principle:

isolated cultures developed counting systems that don’t go beyond 2

Walpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the protocol)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b

Transition function of the FSM:
δ : Q × {0, 1, . . . , b − 1,≥b} → Q × Σ

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 13 / 26

The one-two-many principle

Each state q ∈ Q is associated with a query letter σ = σ(q) ∈ Σ

When in state q, node u cares only about the number πσ of
appearances of σ in its ports (currently)

possible signals = degree(u) + 1

πσ calculated by the one-two-many principle:

isolated cultures developed counting systems that don’t go beyond 2

Walpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the protocol)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b

Transition function of the FSM:
δ : Q × {0, 1, . . . , b − 1,≥b} → Q × Σ

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 13 / 26

The one-two-many principle

Each state q ∈ Q is associated with a query letter σ = σ(q) ∈ Σ

When in state q, node u cares only about the number πσ of
appearances of σ in its ports (currently)

possible signals = degree(u) + 1

πσ calculated by the one-two-many principle:
isolated cultures developed counting systems that don’t go beyond 2

Walpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the protocol)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b

Transition function of the FSM:
δ : Q × {0, 1, . . . , b − 1,≥b} → Q × Σ

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 13 / 26

The one-two-many principle

Each state q ∈ Q is associated with a query letter σ = σ(q) ∈ Σ

When in state q, node u cares only about the number πσ of
appearances of σ in its ports (currently)

possible signals = degree(u) + 1

πσ calculated by the one-two-many principle:
isolated cultures developed counting systems that don’t go beyond 2

Walpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the protocol)

u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b

Transition function of the FSM:
δ : Q × {0, 1, . . . , b − 1,≥b} → Q × Σ

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 13 / 26

The one-two-many principle

Each state q ∈ Q is associated with a query letter σ = σ(q) ∈ Σ

When in state q, node u cares only about the number πσ of
appearances of σ in its ports (currently)

possible signals = degree(u) + 1

πσ calculated by the one-two-many principle:
isolated cultures developed counting systems that don’t go beyond 2

Walpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the protocol)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b

Transition function of the FSM:
δ : Q × {0, 1, . . . , b − 1,≥b} → Q × Σ

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 13 / 26

The one-two-many principle

Each state q ∈ Q is associated with a query letter σ = σ(q) ∈ Σ

When in state q, node u cares only about the number πσ of
appearances of σ in its ports (currently)

possible signals = degree(u) + 1

πσ calculated by the one-two-many principle:
isolated cultures developed counting systems that don’t go beyond 2

Walpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the protocol)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b

Transition function of the FSM:
δ : Q × {0, 1, . . . , b − 1,≥b} → Q × Σ

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 13 / 26

The one-two-many principle

Each state q ∈ Q is associated with a query letter σ = σ(q) ∈ Σ

When in state q, node u cares only about the number πσ of
appearances of σ in its ports (currently)

possible signals = degree(u) + 1

πσ calculated by the one-two-many principle:
isolated cultures developed counting systems that don’t go beyond 2

Walpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the protocol)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b

Transition function of the FSM:
δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 13 / 26

Crux of the model

Applicable to arbitrary network topologies

Fully asynchronous environment

Nodes run the same (randomized) FSM

All parameters of the protocol are constants, independent of any
feature of the input graph (including degree(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

A genuine FSM!

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 14 / 26

Crux of the model

Applicable to arbitrary network topologies

Fully asynchronous environment

Nodes run the same (randomized) FSM

All parameters of the protocol are constants, independent of any
feature of the input graph (including degree(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

A genuine FSM!

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 14 / 26

Crux of the model

Applicable to arbitrary network topologies

Fully asynchronous environment

Nodes run the same (randomized) FSM

All parameters of the protocol are constants, independent of any
feature of the input graph (including degree(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

A genuine FSM!

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 14 / 26

Crux of the model

Applicable to arbitrary network topologies

Fully asynchronous environment

Nodes run the same (randomized) FSM

All parameters of the protocol are constants, independent of any
feature of the input graph (including degree(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

A genuine FSM!

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 14 / 26

Crux of the model

Applicable to arbitrary network topologies

Fully asynchronous environment

Nodes run the same (randomized) FSM

All parameters of the protocol are constants, independent of any
feature of the input graph (including degree(u)):

number of states

size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

A genuine FSM!

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 14 / 26

Crux of the model

Applicable to arbitrary network topologies

Fully asynchronous environment

Nodes run the same (randomized) FSM

All parameters of the protocol are constants, independent of any
feature of the input graph (including degree(u)):

number of states
size of alphabet Σ

bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

A genuine FSM!

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 14 / 26

Crux of the model

Applicable to arbitrary network topologies

Fully asynchronous environment

Nodes run the same (randomized) FSM

All parameters of the protocol are constants, independent of any
feature of the input graph (including degree(u)):

number of states
size of alphabet Σ
bounding parameter b

size of the description of δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

A genuine FSM!

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 14 / 26

Crux of the model

Applicable to arbitrary network topologies

Fully asynchronous environment

Nodes run the same (randomized) FSM

All parameters of the protocol are constants, independent of any
feature of the input graph (including degree(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

A genuine FSM!

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 14 / 26

Crux of the model

Applicable to arbitrary network topologies

Fully asynchronous environment

Nodes run the same (randomized) FSM

All parameters of the protocol are constants, independent of any
feature of the input graph (including degree(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

A genuine FSM!

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 14 / 26

Crux of the model

Applicable to arbitrary network topologies

Fully asynchronous environment

Nodes run the same (randomized) FSM

All parameters of the protocol are constants, independent of any
feature of the input graph (including degree(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

A genuine FSM!

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 14 / 26

Crux of the model

Applicable to arbitrary network topologies

Fully asynchronous environment

Nodes run the same (randomized) FSM

All parameters of the protocol are constants, independent of any
feature of the input graph (including degree(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b − 1,≥b} → 2Q×Σ

A genuine FSM!

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 14 / 26

1 Cell biology — a short intro

2 Abstract models

3 Networked finite state machines
Results
MIS protocol

4 Conclusions

nFSM — computability

Theorem

The execution of an nFSM protocol can be simulated by a (randomized)
linear-space Turing machine.

Theorem

The execution of a (randomized) linear-space Turing machine can be
simulated by an nFSM protocol on a path.

Corollary (Formal languages)

nFSM protocols do not exceed level 3 (out of 4) in Chomsky’s hierarchy.

Observation (Anonymous networks)

Leader election and consensus are impossible under nFSM.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 15 / 26

nFSM — computability

Theorem

The execution of an nFSM protocol can be simulated by a (randomized)
linear-space Turing machine.

Theorem

The execution of a (randomized) linear-space Turing machine can be
simulated by an nFSM protocol on a path.

Corollary (Formal languages)

nFSM protocols do not exceed level 3 (out of 4) in Chomsky’s hierarchy.

Observation (Anonymous networks)

Leader election and consensus are impossible under nFSM.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 15 / 26

nFSM — computability

Theorem

The execution of an nFSM protocol can be simulated by a (randomized)
linear-space Turing machine.

Theorem

The execution of a (randomized) linear-space Turing machine can be
simulated by an nFSM protocol on a path.

Corollary (Formal languages)

nFSM protocols do not exceed level 3 (out of 4) in Chomsky’s hierarchy.

Observation (Anonymous networks)

Leader election and consensus are impossible under nFSM.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 15 / 26

nFSM — computability

Theorem

The execution of an nFSM protocol can be simulated by a (randomized)
linear-space Turing machine.

Theorem

The execution of a (randomized) linear-space Turing machine can be
simulated by an nFSM protocol on a path.

Corollary (Formal languages)

nFSM protocols do not exceed level 3 (out of 4) in Chomsky’s hierarchy.

Observation (Anonymous networks)

Leader election and consensus are impossible under nFSM.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 15 / 26

nFSM — computability

Theorem

The execution of an nFSM protocol can be simulated by a (randomized)
linear-space Turing machine.

Theorem

The execution of a (randomized) linear-space Turing machine can be
simulated by an nFSM protocol on a path.

Corollary (Formal languages)

nFSM protocols do not exceed level 3 (out of 4) in Chomsky’s hierarchy.

Observation (Anonymous networks)

Leader election and consensus are impossible under nFSM.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 15 / 26

Performance measure

Run-time:

time units until all nodes terminate

adversarial delays ≤ 1 time units

Las Vegas algorithms

Run-time bounds hold in expectation and w.h.p.

Efficient algorithm = logO(1) n run-time [Linial 92]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 16 / 26

Performance measure

Run-time:

time units until all nodes terminate

adversarial delays ≤ 1 time units

Las Vegas algorithms

Run-time bounds hold in expectation and w.h.p.

Efficient algorithm = logO(1) n run-time [Linial 92]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 16 / 26

Performance measure

Run-time:

time units until all nodes terminate

adversarial delays ≤ 1 time units

Las Vegas algorithms

Run-time bounds hold in expectation and w.h.p.

Efficient algorithm = logO(1) n run-time [Linial 92]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 16 / 26

Performance measure

Run-time:

time units until all nodes terminate

adversarial delays ≤ 1 time units

Las Vegas algorithms

Run-time bounds hold in expectation and w.h.p.

Efficient algorithm = logO(1) n run-time [Linial 92]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 16 / 26

Performance measure

Run-time:

time units until all nodes terminate

adversarial delays ≤ 1 time units

Las Vegas algorithms

Run-time bounds hold in expectation and w.h.p.

Efficient algorithm = logO(1) n run-time [Linial 92]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 16 / 26

Synchronizer

Theorem

Every nFSM protocol designed to operate in a synchronous environment
can be simulated in an asynchronous environment with a constant
multiplicative run-time overhead.

Makes life much easier for the protocol designer

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 17 / 26

Synchronizer

Theorem

Every nFSM protocol designed to operate in a synchronous environment
can be simulated in an asynchronous environment with a constant
multiplicative run-time overhead.

Makes life much easier for the protocol designer

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 17 / 26

Efficient algorithm: maximal independent set

Theorem

There exists an nFSM protocol that computes an MIS in any n-node graph
in time O(log2 n).

Message passing model:

O(log n) [Luby 86], [Alon, Babai, Itai 86]

Ω
(√

log n
)

[Kuhn, Moscibroda, Wattenhofer 04]

Anonymous networks, constant size messages:
Ω(log n) [Kothapalli, Onus, Scheideler, Schindelhauer 06]
O(log n) [Métivier, Robson, Sehab-Djahromi, Zemmari 11]

The beeping model:

O(log2 n)–O(log3 n)
[Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph 11],
[Afek, Alon, Bar-Joseph, Cornejo, Haeupler, Kuhn 11]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 18 / 26

Efficient algorithm: maximal independent set

Theorem

There exists an nFSM protocol that computes an MIS in any n-node graph
in time O(log2 n).

Message passing model:

O(log n) [Luby 86], [Alon, Babai, Itai 86]

Ω
(√

log n
)

[Kuhn, Moscibroda, Wattenhofer 04]

Anonymous networks, constant size messages:
Ω(log n) [Kothapalli, Onus, Scheideler, Schindelhauer 06]
O(log n) [Métivier, Robson, Sehab-Djahromi, Zemmari 11]

The beeping model:

O(log2 n)–O(log3 n)
[Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph 11],
[Afek, Alon, Bar-Joseph, Cornejo, Haeupler, Kuhn 11]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 18 / 26

Efficient algorithm: maximal independent set

Theorem

There exists an nFSM protocol that computes an MIS in any n-node graph
in time O(log2 n).

Message passing model:

O(log n) [Luby 86], [Alon, Babai, Itai 86]

Ω
(√

log n
)

[Kuhn, Moscibroda, Wattenhofer 04]

Anonymous networks, constant size messages:
Ω(log n) [Kothapalli, Onus, Scheideler, Schindelhauer 06]
O(log n) [Métivier, Robson, Sehab-Djahromi, Zemmari 11]

The beeping model:

O(log2 n)–O(log3 n)
[Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph 11],
[Afek, Alon, Bar-Joseph, Cornejo, Haeupler, Kuhn 11]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 18 / 26

Efficient algorithm: maximal independent set

Theorem

There exists an nFSM protocol that computes an MIS in any n-node graph
in time O(log2 n).

Message passing model:

O(log n) [Luby 86], [Alon, Babai, Itai 86]

Ω
(√

log n
)

[Kuhn, Moscibroda, Wattenhofer 04]

Anonymous networks, constant size messages:
Ω(log n) [Kothapalli, Onus, Scheideler, Schindelhauer 06]
O(log n) [Métivier, Robson, Sehab-Djahromi, Zemmari 11]

The beeping model:

O(log2 n)–O(log3 n)
[Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph 11],
[Afek, Alon, Bar-Joseph, Cornejo, Haeupler, Kuhn 11]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 18 / 26

Efficient algorithm: (∆ + 1)-coloring

Irrelevant for arbitrary graphs (can’t specify output)

Theorem

Given some constant d, there exists an nFSM protocol that (d + 1)-colors
any n-node graph satisfying ∆ ≤ d in time O(log n).

Message passing model:

O(∆ + log∗ n) [Barenboim, Elkin 09], [Kuhn 09]

Ω(log∗ n) [Linial 92]

O(log ∆ +
√

log n) [Schneider, Wattenhofer 10]

Anonymous networks, constant size messages: Ω(log n)
[Kothapalli, Onus, Scheideler, Schindelhauer 06]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 19 / 26

Efficient algorithm: (∆ + 1)-coloring

Irrelevant for arbitrary graphs (can’t specify output)

Theorem

Given some constant d, there exists an nFSM protocol that (d + 1)-colors
any n-node graph satisfying ∆ ≤ d in time O(log n).

Message passing model:

O(∆ + log∗ n) [Barenboim, Elkin 09], [Kuhn 09]

Ω(log∗ n) [Linial 92]

O(log ∆ +
√

log n) [Schneider, Wattenhofer 10]

Anonymous networks, constant size messages: Ω(log n)
[Kothapalli, Onus, Scheideler, Schindelhauer 06]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 19 / 26

Efficient algorithm: (∆ + 1)-coloring

Irrelevant for arbitrary graphs (can’t specify output)

Theorem

Given some constant d, there exists an nFSM protocol that (d + 1)-colors
any n-node graph satisfying ∆ ≤ d in time O(log n).

Message passing model:

O(∆ + log∗ n) [Barenboim, Elkin 09], [Kuhn 09]

Ω(log∗ n) [Linial 92]

O(log ∆ +
√

log n) [Schneider, Wattenhofer 10]

Anonymous networks, constant size messages: Ω(log n)
[Kothapalli, Onus, Scheideler, Schindelhauer 06]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 19 / 26

Efficient algorithm: (∆ + 1)-coloring

Irrelevant for arbitrary graphs (can’t specify output)

Theorem

Given some constant d, there exists an nFSM protocol that (d + 1)-colors
any n-node graph satisfying ∆ ≤ d in time O(log n).

Message passing model:

O(∆ + log∗ n) [Barenboim, Elkin 09], [Kuhn 09]

Ω(log∗ n) [Linial 92]

O(log ∆ +
√

log n) [Schneider, Wattenhofer 10]

Anonymous networks, constant size messages: Ω(log n)
[Kothapalli, Onus, Scheideler, Schindelhauer 06]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 19 / 26

Efficient algorithm: tree 3-coloring

Theorem

There exists an nFSM protocol that 3-colors any (undirected) n-node tree
in time O(log n).

Message passing model:

Anonymous (undirected) trees, constant size messages: Ω(log n)
[Kothapalli, Onus, Scheideler, Schindelhauer 06]

Directed trees:

O (log∗ n) [Cole, Vishkin 86]
Ω (log∗ n) [Linial 92]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 20 / 26

Efficient algorithm: tree 3-coloring

Theorem

There exists an nFSM protocol that 3-colors any (undirected) n-node tree
in time O(log n).

Message passing model:

Anonymous (undirected) trees, constant size messages: Ω(log n)
[Kothapalli, Onus, Scheideler, Schindelhauer 06]

Directed trees:

O (log∗ n) [Cole, Vishkin 86]
Ω (log∗ n) [Linial 92]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 20 / 26

Efficient algorithm: tree 3-coloring

Theorem

There exists an nFSM protocol that 3-colors any (undirected) n-node tree
in time O(log n).

Message passing model:

Anonymous (undirected) trees, constant size messages: Ω(log n)
[Kothapalli, Onus, Scheideler, Schindelhauer 06]

Directed trees:

O (log∗ n) [Cole, Vishkin 86]
Ω (log∗ n) [Linial 92]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 20 / 26

Efficient algorithm: maximal matching

Theorem

Under a small inevitable modification to the model, there exists an nFSM
protocol that computes an MM in any n-node graph in time O(log2 n).

Message passing model:

O(log n) [Israeli, Itai 86]

Ω
(√

log n
)

[Kuhn, Moscibroda, Wattenhofer 04]

Anonymous networks, constant size messages: Ω(log n)
[Kothapalli, Onus, Scheideler, Schindelhauer 06]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 21 / 26

Efficient algorithm: maximal matching

Theorem

Under a small inevitable modification to the model, there exists an nFSM
protocol that computes an MM in any n-node graph in time O(log2 n).

Message passing model:

O(log n) [Israeli, Itai 86]

Ω
(√

log n
)

[Kuhn, Moscibroda, Wattenhofer 04]

Anonymous networks, constant size messages: Ω(log n)
[Kothapalli, Onus, Scheideler, Schindelhauer 06]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 21 / 26

Efficient algorithm: maximal matching

Theorem

Under a small inevitable modification to the model, there exists an nFSM
protocol that computes an MM in any n-node graph in time O(log2 n).

Message passing model:

O(log n) [Israeli, Itai 86]

Ω
(√

log n
)

[Kuhn, Moscibroda, Wattenhofer 04]

Anonymous networks, constant size messages: Ω(log n)
[Kothapalli, Onus, Scheideler, Schindelhauer 06]

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 21 / 26

Simulating executions on the square graph

Lemma

For every nFSM protocol Π with bounding parameter b = 1, there exists
an nFSM protocol Π2 such that for every graph G , the execution of Π2 on
G simulates the execution of Π on G 2 with a constant multiplicative
run-time overhead.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 22 / 26

Efficient algorithms: 2-hop variants

Corollary (Maximal 2-hop independent set)

There exists an nFSM protocol that computes a maximal 2-hop
independent set for any n-node graph in time O(log2 n).

Corollary (2-hop coloring)

Given some constant d, there exists an nFSM protocol that computes a
2-hop coloring with (d2 + 1) colors for any n-node graph satisfying ∆ ≤ d
in time O(log n).

Theorem

Maximal k-hop independent set and k-hop coloring are impossible in
anonymous networks for any k ≥ 3.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 23 / 26

Efficient algorithms: 2-hop variants

Corollary (Maximal 2-hop independent set)

There exists an nFSM protocol that computes a maximal 2-hop
independent set for any n-node graph in time O(log2 n).

Corollary (2-hop coloring)

Given some constant d, there exists an nFSM protocol that computes a
2-hop coloring with (d2 + 1) colors for any n-node graph satisfying ∆ ≤ d
in time O(log n).

Theorem

Maximal k-hop independent set and k-hop coloring are impossible in
anonymous networks for any k ≥ 3.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 23 / 26

1 Cell biology — a short intro

2 Abstract models

3 Networked finite state machines
Results
MIS protocol

4 Conclusions

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping rounds into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per round

logarithmically long phases

Problem:

u must count the rounds in a phase (deciding when it ends)

phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 24 / 26

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping rounds into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per round

logarithmically long phases

Problem:

u must count the rounds in a phase (deciding when it ends)

phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 24 / 26

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping rounds into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per round

logarithmically long phases

Problem:

u must count the rounds in a phase (deciding when it ends)

phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 24 / 26

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping rounds into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per round

logarithmically long phases

Problem:

u must count the rounds in a phase (deciding when it ends)

phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 24 / 26

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping rounds into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per round

logarithmically long phases

Problem:

u must count the rounds in a phase (deciding when it ends)

phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 24 / 26

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping rounds into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per round

logarithmically long phases

Problem:

u must count the rounds in a phase (deciding when it ends)
phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 24 / 26

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping rounds into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per round

logarithmically long phases

Problem:

u must count the rounds in a phase (deciding when it ends)
phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 24 / 26

MIS under nFSM — solution

D1 U0

U1

U2

D2 LW
u0 = u1 = 0

u0, u1 ≥ 1

u 1
=
u 2

=
0 u

1 , u
2 ≥

1

u
0

=
u

2
=

0 u 0
, u

2
≥

1

w = 0

w ≥ 1

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 25 / 26

MIS under nFSM — solution

Relax requirement that phase is aligned and of predetermined length

Tournament:

length determined probabilistically
“softly” aligned
maintained under nFSM

Prove:
1 Amortized length of a tournament is O(log n) w.h.p.

2 Guarantee fair competition =⇒
const fraction of the edges is removed with const probability =⇒
O(log n) tournaments w.h.p.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 25 / 26

MIS under nFSM — solution

Relax requirement that phase is aligned and of predetermined length

Tournament:

length determined probabilistically
“softly” aligned
maintained under nFSM

Prove:
1 Amortized length of a tournament is O(log n) w.h.p.

2 Guarantee fair competition =⇒
const fraction of the edges is removed with const probability =⇒
O(log n) tournaments w.h.p.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 25 / 26

MIS under nFSM — solution

Relax requirement that phase is aligned and of predetermined length

Tournament:

length determined probabilistically
“softly” aligned
maintained under nFSM

Prove:
1 Amortized length of a tournament is O(log n) w.h.p.

2 Guarantee fair competition =⇒
const fraction of the edges is removed with const probability =⇒
O(log n) tournaments w.h.p.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 25 / 26

MIS under nFSM — solution

Relax requirement that phase is aligned and of predetermined length

Tournament:

length determined probabilistically
“softly” aligned
maintained under nFSM

Prove:
1 Amortized length of a tournament is O(log n) w.h.p.
2 Guarantee fair competition =⇒

const fraction of the edges is removed with const probability =⇒
O(log n) tournaments w.h.p.

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 25 / 26

1 Cell biology — a short intro

2 Abstract models

3 Networked finite state machines
Results
MIS protocol

4 Conclusions

Summary

Abstract model for network of FSMs

Computational power slightly weaker

Fundamental DC problems still admit efficient protocols

Suitable to biological cellular networks

Local computation, communication, asynchrony

Also networks of man made nano-devices

Reasonable constants: |Q| = |Σ| = 7, b = 1.

Independent theoretical interest

Biology through the DC lens

Joint works with Jochen Seidel, Jasmin Smula, and Roger Wattenhofer

OBRIGADO

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 26 / 26

Summary

Abstract model for network of FSMs

Computational power slightly weaker

Fundamental DC problems still admit efficient protocols

Suitable to biological cellular networks

Local computation, communication, asynchrony

Also networks of man made nano-devices

Reasonable constants: |Q| = |Σ| = 7, b = 1.

Independent theoretical interest

Biology through the DC lens

Joint works with Jochen Seidel, Jasmin Smula, and Roger Wattenhofer

OBRIGADO

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 26 / 26

Summary

Abstract model for network of FSMs

Computational power slightly weaker

Fundamental DC problems still admit efficient protocols

Suitable to biological cellular networks

Local computation, communication, asynchrony

Also networks of man made nano-devices

Reasonable constants: |Q| = |Σ| = 7, b = 1.

Independent theoretical interest

Biology through the DC lens

Joint works with Jochen Seidel, Jasmin Smula, and Roger Wattenhofer

OBRIGADO

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 26 / 26

Summary

Abstract model for network of FSMs

Computational power slightly weaker

Fundamental DC problems still admit efficient protocols

Suitable to biological cellular networks

Local computation, communication, asynchrony

Also networks of man made nano-devices

Reasonable constants: |Q| = |Σ| = 7, b = 1.

Independent theoretical interest

Biology through the DC lens

Joint works with Jochen Seidel, Jasmin Smula, and Roger Wattenhofer

OBRIGADO

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 26 / 26

Summary

Abstract model for network of FSMs

Computational power slightly weaker

Fundamental DC problems still admit efficient protocols

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Reasonable constants: |Q| = |Σ| = 7, b = 1.

Independent theoretical interest

Biology through the DC lens

Joint works with Jochen Seidel, Jasmin Smula, and Roger Wattenhofer

OBRIGADO

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 26 / 26

Summary

Abstract model for network of FSMs

Computational power slightly weaker

Fundamental DC problems still admit efficient protocols

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Reasonable constants: |Q| = |Σ| = 7, b = 1.

Independent theoretical interest

Biology through the DC lens

Joint works with Jochen Seidel, Jasmin Smula, and Roger Wattenhofer

OBRIGADO

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 26 / 26

Summary

Abstract model for network of FSMs

Computational power slightly weaker

Fundamental DC problems still admit efficient protocols

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Reasonable constants: |Q| = |Σ| = 7, b = 1.

Independent theoretical interest

Biology through the DC lens

Joint works with Jochen Seidel, Jasmin Smula, and Roger Wattenhofer

OBRIGADO

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 26 / 26

Summary

Abstract model for network of FSMs

Computational power slightly weaker

Fundamental DC problems still admit efficient protocols

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Reasonable constants: |Q| = |Σ| = 7, b = 1.

Independent theoretical interest

Biology through the DC lens

Joint works with Jochen Seidel, Jasmin Smula, and Roger Wattenhofer

OBRIGADO

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 26 / 26

Summary

Abstract model for network of FSMs

Computational power slightly weaker

Fundamental DC problems still admit efficient protocols

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Reasonable constants: |Q| = |Σ| = 7, b = 1.

Independent theoretical interest

Biology through the DC lens

Joint works with Jochen Seidel, Jasmin Smula, and Roger Wattenhofer

OBRIGADO

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 26 / 26

Summary

Abstract model for network of FSMs

Computational power slightly weaker

Fundamental DC problems still admit efficient protocols

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Reasonable constants: |Q| = |Σ| = 7, b = 1.

Independent theoretical interest

Biology through the DC lens

Joint works with Jochen Seidel, Jasmin Smula, and Roger Wattenhofer

OBRIGADO

Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 26 / 26

Summary

Abstract model for network of FSMs

Computational power slightly weaker

Fundamental DC problems still admit efficient protocols

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Reasonable constants: |Q| = |Σ| = 7, b = 1.

Independent theoretical interest

Biology through the DC lens

Joint works with Jochen Seidel, Jasmin Smula, and Roger Wattenhofer

OBRIGADO
Yuval Emek (ETH Zurich) Distributed Computing on the (Fruit) Fly ADGA 2012 26 / 26

	Cell biology — a short intro
	Abstract models
	Networked finite state machines
	Results
	MIS protocol

	Conclusions

