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ABSTRACT
Several real-time Linux extensions are available nowadays.
Two of those extensions that have received special attention
recently are Preempt-RT and Xenomai. This paper evalu-
ates to what extent they provide deterministic guarantees
when reacting to external events, an essential characteris-
tic when it comes to real-time systems. For this, we define
two simple experimental approaches. Our results indicate
that Preempt-RT is more prone to temporal variations than
Xenomai when the system is subject to overload scenarios.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Measurements

General Terms
Measurement, Performance

Keywords
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1. INTRODUCTION
Real-time systems encompasses a broad range of applica-
tions in multimedia, transportation, manufacturing, telecom-
munications, health etc. In all these scenarios, correctly
choosing a Real-Time Operating System (RTOS) is a fun-
damental design issue. Although technological hardware ad-
vances are essential to the development of the IT indus-
try, some of these innovations may introduce undesirable
unpredictability to the implementation of a RTOS. For ex-
ample, cache memories, direct memory access, out-of-order
execution and branch prediction units may introduce non-
negligible sources of indeterminism [9, 14]. Thus, the con-
struction of a general purpose operating system with focus
on timing predictability remains a challenging research issue.

Although Linux is a popular and widely used OS, the stan-
dard Linux kernel [4] fails to provide the timing guarantees
required by critical real-time systems [10, 1]. To circumvent
this problem, several approaches have been developed in or-
der to increase the timing predictability of Linux [13, 8, 6,
2, 7, 5]. The diversity and constant evolution in their de-
sign call for comparative studies to assess the determinism
degree offered by such platforms. The results of this kind of
studies can help real-time systems designers to choose the
appropriate solution according to their needs.

This paper presents and compares two real-time Linux ker-
nel patches, Preempt-RT (LinuxPrt) [13] and Xenomai
(LinuxXen) [8], developed to increase the predictability of
Linux. The main contributions of this work are: (i) an eval-
uation procedure based on simple software and COTS hard-
ware, and (ii) a report analysis of Preempt-RT and Xenomai
latency performance obtained through our experimental re-
sults. Overall, these results show that LinuxXen provides
better timing guarantees than LinuxPrt.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces some basic definitions and discusses some
sources of unpredictability in Linux. Then, both LinuxPrt

and LinuxXen are described. The metrics used in our evalu-
ation are also defined in this section. Section 3 describes our
experiments and results are given in Section 4. Finally, Sec-
tion 5 briefly discusses related work and Section 6 concludes
the paper.

2. INTERRUPT HANDLING
An interrupt request (IRQ) of the processor is typically
asynchronous and can happen at any time during the proces-
sor execution cycle. After being issued by a hardware device
or a software exception, an interrupt request is eventually
detected by the processor. When it occurs, the detection of
an IRQ diverts the processor to a piece of code outside the
on-going execution flow. Such a code is called interrupt

handler or interrupt service routine (ISR).

In this work, we call both an interrupt request and its re-
lated interrupt handler execution as interruption. We say
that interruptions are disabled when the processor is not al-
lowed to divert its on-going execution flow to the code of an
interrupt handler.



It is important to note that the asynchronous nature of inter-
rupt requests implies that they can occur while the critical
section of another interrupt handler is already being exe-
cuted by the processor, possibly with interruptions disabled.
This scenario may delay the detection of interrupt requests
by the processor in a non-deterministic manner. The way
the OS handles interruptions implies its predictability level.

2.1 Linux
The conventional method used to minimize the impact of in-
terruptions on the response time of processes is to divide the
implementation of interrupt handlers into two parts. The
first part, referred to as the critical section of the han-
dler, runs critical operations immediately after its activa-
tion, usually with interruptions disabled. One may enable
interruptions during some parts of a critical section in order
to enable preemptions. However, such an implementation
must rely on locks to ensure controlled access to shared data.
The second part of the handler is dedicated to non-critical
operations. Its execution can be delayed and normally hap-
pens with interruptions enabled. In Linux, this second part
of the handlers are called softirqs.

Just after the end of the critical section of an interrupt han-
dler, the associated softirq becomes able to be executed.
However, between the instant at which the critical section
execution terminates and the instant at which the deferred
softirq begins to execute, other interruptions may occur,
causing a possible delay in starting the softirq execution.
These possible extra delays have direct impact on real-time
operating systems, where timeouts or hardware events are
used to trigger tasks, in a similar manner as softirqs.

2.2 Linux Preempt-RT
LinuxPrt [11, 16] is a Linux real-time patch originally devel-
oped by Ingo Molnar. This patch makes the Linux kernel
almost fully preemptible by re-engineering the use of locks
inside the kernel. As soon as a high priority process is re-
leased, it can acquire the processor with low latency, with
no need to wait for the end of the execution of a lower pri-
ority process, even if such a process is running in kernel
mode. Also, in order to limit the unpredictability caused by
shared resources, LinuxPrt provides synchronization primi-
tives that are able to use a priority inheritance protocol [17].
Further, a specific implementation of high resolution timers
[20] allows the kernel to provide time resolution in the or-
der of microseconds. For instance, using such timers, other
researchers [16, 18] were able to measure latencies with an
accuracy of the order of µs.

LinuxPrt creates specific kernel threads to handle both soft-
ware and hardware interrupt requests. Upon an IRQ, the
associated handler masks the request, wakes up the associ-
ated thread and returns to the interrupted code. This ap-
proach greatly reduces the execution latency of the critical
part of interrupt handlers in comparison with the standard
Linux approach. The interrupt thread that has been woken
up is eventually scheduled according to its priority and then
starts executing. Another advantage of LinuxPrt is that sev-
eral Linux legacy software packages such as C libraries and
programming environments can be used.

It is interesting to note that the threaded implementation
of interrupt handlers in LinuxPrt may be a source of un-
predictability when interrupt threads are delayed by the
scheduling policy or by other interrupt requests. Neverthe-
less, LinuxPrt offers the option IRQF_NODELAY which allows
one to disable the threaded implementation of a specific in-
terrupt line. When this option is set, interrupts are handled
as in standard Linux.

2.3 Linux Xenomai
Xenomai or LinuxXen is a real-time Linux framework that
encompasses an OS kernel, APIs and a set of utilities. It
uses an interrupt request indirection layer [19], also called
nanokernel, to isolate real-time tasks from Linux processes.
According to this approach, when an IRQ occurs, the nanok-
ernel forwards the request either to a real-time task or to a
conventional Linux process. In the first case, the interrupt
handler runs immediately. In the second case, the request
is enqueued and is further delivered to Linux when there
are no more pending real-time tasks. Whenever the Linux
kernel requests disabling interruptions, the nanokernel just
makes the Linux kernel believe that interruptions are dis-
abled. The nanokernel keeps intercepting any hardware in-
terrupt requests. The interrupt requests targeted to Linux
are kept enqueued until the Linux kernel requests enabling
interruptions.

The nanokernel of LinuxXen is based on a resource virtual-
ization layer called Adeos (Adaptative Domain Environment
for Operating Systems) [21]. Adeos eases hardware sharing
and provides a small API which is architecture independent.
In short, Adeos relies on two basic concepts: domains and
hierarchical interrupt pipelines. A domain defines an iso-
lated execution environment, according to which one can
run programs or even a complete operating system. The
hierarchical interrupt pipeline, called ipipe, delivers inter-
rupt request across different domains. When a domain is
registered, it is stored in a specific position in the ipipe ac-
cording to its timing requirements. The interrupt indirection
mechanism handles hierarchical IRQ deliveries following the
priority associated to each domain.

Real-time services in LinuxXen correspond to the highest
priority domain in the ipipe, which is called the primary
domain. The secondary domain refers to the Linux kernel
itself, from which common Linux software libraries are avail-
able. At this level, however, LinuxXen offers weaker timing
guarantees due to the way user process are mapped into
kernel threads.

2.4 Evaluation metrics
Clearly, the way interrupt handlers are dealt with by an OS
kernel interferes in the system timeliness as a whole. In
this paper, we consider two metrics to analyze the timing
behavior of an OS: interrupt latency and activation latency.

Interrupt latency
This first metric is directly induced by the interruption mech-
anism explained earlier in this section. Thus, the interrupt

latency is defined as the time interval between the instant
at which an interrupt request is issued and the starting time
of the execution of the associated handler.
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1: Interrupt and activation latencies at station EM for the first experiment

Activation latency
To define this second metric, we considered a real-time task
τ which is suspended while waiting for an event. When such
event occurs, the associated interrupt request triggers the
corresponding handler which, in turn, wakes up τ . Thus,
the activation latency, is defined as the time interval be-
tween the instant of the event occurrence and the consequent
beginning execution of τ .

As for softirqs, the activation latency may be increased by
the occurrence of interruptions. Furthermore, the execution
of other softirqs may be scheduled according to some policy
(eg FIFO, fixed priority), which can also generate interfer-
ence in the activation latency.

3. CASE STUDIES
In general, performing accurate time measurements at the
interruption level is not simple and may require the use of
external devices such as oscilloscopes or other computers. In
fact, the exact instant at which an interrupt request occurs is
difficult to be determined since this is an asynchronous event
which can be triggered by any hardware device. Neverthe-
less, since the objective of this work is to characterize and
compare the degree of predictability in different operating
systems platforms, we adopt simple experiment setups that
is easily reproducible. In other words, we are interested in
measuring approximate values of latencies for different real-
time OS under similar load scenarios.

To compare the OS platforms two experiments were set up,
both of which use only computer stations connected to each
other by standard communication devices. These two ex-
periments, described in Sections 3.1 and 3.2, are to measure
interrupt and activation latencies with and without load sce-
narios. These latencies are denoted Lirq and Lact, respec-
tively. The procedure to generate load scenarios is given in
Section 3.3.

One may choose only one of these two experiments. The
first is simpler and can be used for comparison purpose.
The second is more elaborated and provides more accurate
measurements of interrupt latencies.

3.1 First experiment
Figure 2 illustrates how the first experiment was set up. We
use three stations, ST , SL and SM and two distinct Ethernet
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2: First experiment setup

network devices, eth0 and eth1, to connect ST to SM and
SL to SM , respectively. The role of ST is to trigger events
at the parallel port of SM . Such events should be timely
handled by SM , the station whose latencies are measured.
SL is the load station, used to create load scenarios on SM

via eth1, as will be explained in Section 3.3.

The activities handled by SM are illustrated in Figure 1.
The following sequence of events occurs:

1. ST sends Ethernet frames to SM , which are received
through its eth0 device. Upon the receiving of each
frame the device eth0 issues an interrupt request at
SM . In turn, the associated interrupt handler (ISReth0

)
preempts the application that is executing on SM .

2. ISReth0
triggers an interrupt request on the Parallel

Port (PP) interrupt line and saves the instant t1 in
memory. Note that t1 is the local time at SM and is
read just after the arrival of an Ethernet frame at eth0.

3. Upon the detection of the parallel port interrupt re-
quest, its handler ISRPP preempts the application on
SM . Then ISRPP saves the instant t2 and wakes up
task τ . This second time instant is the local time value
at SM just after the start of ISRPP .

4. When task τ wakes up, it saves instant t3 in memory
and then is suspended until the next PP event. Thus,
t3 is the time instant at which τ starts executing.

During the experiment runs, the measured values of Lirq and
Lact were transferred from main memory to a file system in
SM by a user process using a FIFO channel. The assigned
priority of the user process was lower than the priority of
interrupt handlers. Also, this data transferring procedure
generated sufficiently rare events (20 per second). This data



transferring scheme was to prevent possible interference in
the measured values.

In order to compare the behavior of the analyzed platforms,
both latencies can be computed by the described procedure
as Lirq = t2 − t1 and Lact = t3 − t2, as depicted in Figure
1. However, it is worth noticing that the measurements are
performed by the same station that is responsible for man-
aging real-time activities. Indeed, station SM waits for the
asynchronous arrival of an Ethernet frame at eth0 to trig-
ger the corresponding parallel port interrupt request so that
measurements can be carried out. This dependence between
external and internal events may compromise some measure-
ments. In order to evaluate to what extent such a procedure
interfere in the measurements, a second experiment was set
up.

3.2 Second experiment
The same three stations SM , ST and SL are used in this ex-
periment setup. Station SL is configured as before while the
other two stations have different roles, as shown in Figure 4.

0

0 1

1

SM

eth1

SLST

Parallel Ports

4: Second experimental set-up

Similar to the first experiment, the values of Lirq and Lact

correspond to real-time activities executed by SM . How-
ever, the measurements are carried out by ST instead. The
measurement procedure makes use of the parallel port that
connects ST and SM , as can be seen from the figure. The de-
vice eth0 is no longer necessary. In other words, station ST

triggers PP interrupt requests at SM via its parallel port.
Station SM handles such interrupt requests, waking up a
real-time task τ similarly to the previous experiment.

Note that in this second experiment, measurements could
not be carried out by SM unless station local clocks were
synchronized to each other. To avoid dealing with extra
complication due to clock synchronization protocol, time
measurements are performed only at ST . For example, sup-
pose that the time occurrence of an event e on SM needs to
be measured. In such a case, just after e, SM triggers back
an interrupt request on the ST PP interrupt line and the
measurement is taken at ST while this interrupt request is
handled by ISRPP . As a consequence, the described mea-
surement procedure must take into account the interrupt
latency δ in ST . In other words, if e occurs at real-time t on
SM , it will be measured at real-time t + δ on ST .

The value of δ can be estimated, for example, by carrying
out the first experiment, but without using station SL. In
this work, we used LinuxXen at ST , running in single mode
with minimal load. The estimated value of δ was taken as
the mean value δ̄ observed in the measurements obtained
with the first experiment. For this platform δ̄ = 9µs with
standard deviation 0.1µs.

Figure 3 summarizes the sequence of events that occur in SM

and ST , which makes up the second measurement procedure:

1. Station ST triggers an interrupt request on the PP
interrupt line of station SM and saves instant t1 in
memory. This time instant is the local clock of ST

just after the interrupt is requested.

2. The PP interrupt request (PP-IRQ) is detected by the
SM processor and the ISRPP handler of SM is acti-
vated, causing the preemption of the application run-
ning on SM .

3. The handler ISRPP of SM triggers back an interrupt
request on the PP interrupt line of station ST and
wakes up task τ .

4. The PP-IRQ is detected by the ST processor and the
PP interrupt handler ISRPP of ST saves time t2 in
memory. This time instant corresponds to the value of
the local clock of ST just after the start of its ISRPP .

5. Task τ wakes up in SM and triggers back a new inter-
rupt request on the PP interrupt line of station ST .

6. The handler ISRPP of ST is activated to deal with this
second interrupt request, saving the current value of its
local clock t3. This instant corresponds to the time at
which ST is informed about the activation of τ .

As can be seen from Figure 3, differently from the first ex-
periment, now Lirq = t2 − t1 − δ. On the other hand, some
care must be taken in order to measure Lact accurately as
the interrupt request issued by τ may take place before or
after t2, introducing an experimental variability not related
to the real value of t3 − t2. This issue will be further dis-
cussed when analyzing the obtained experimental results in
Section 4.

During the measurements, the obtained values were trans-
ferred from memory to a file system in ST using the same
data transferring scheme used in the first experiment. In
order to minimize any possible interference, ST was run in
single user mode with minimal load.

3.3 Load scenarios
The experiments were carried out with and without load
scenarios in station SM . Without any load, SM was set up
with its kernel in single mode and with minimum activities,
i.e. both SL and no other process in SM generate extra load.
As will be seen, in general, the analyzed real-time patches
present high levels of predictability under this situation.

The load generated was applied to station SM , which was
stressed by two different types of load, triggered by internal
and external events. Both types of load were started a few
seconds before the beginning of the measurements. As will
be seen, under such load scenarios, it was possible to assess
to what extent the analyzed real-time patches can provide
predictability.

The internal events that generated CPU and I/O load on SM

were performed by executing the following shell commands:
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while "true"; do
dd if=/dev/hda2 of=/dev/null bs=1M count=1000

find / -name "*.c" | xargs egrep include
tar -cjf /tmp/root.tbz2 /usr/src/linux-xenomai
cd /usr/src/linux-preempt; make clean; make

done

The external events used to load SM were due to the ar-
rival of 64 byte UDP packets at eth1 sent by station SL.
Station SM was configured as a server and SL as a client.
The packet sending rate was set to 200kHz, which is the
maximum network rate allowed. With this setup, we were
able to issue more than 100, 000 interrupt requests per sec-
ond at eth1. This device used SM interrupt line 18, whose
priority is lower than the priority of the PP interrupt line.
Thus, in an ideal situation, one would expect that receiving
packets from eth1 would not interfere in the execution of PP
interrupt request related events.

4. RESULTS
The experiments were conducted on three Pentium 4 com-
puters with 2.6GHz processors and 512MB RAM mem-
ory. Three operating system platforms were analyzed, one
of which with two configuration options:

• LinuxStd: Linux standard - kernel version 2.6.23.9 (low-
latency option);

• LinuxPrt: Linux with patch Preempt-RT (rt12) - kernel
version 2.6.23.9;

• LinuxPrtND: LinuxPrt with option IRQF_NODELAY used
to initialize the PP interrupt line;

• LinuxXen: Linux with patch Xenomai - version 2.4-rc5 -
kernel version 2.6.19.7.

LinuxStd was considered for the sake of illustration. Al-
though this general purpose OS is not suitable to deal with
real-time applications, it has been used here as a reference,
against which one can compare real-time Linux patches.
LinuxPrtND corresponds to setting the option IRQF_NODELAY

at the initialization time of PP interrupt line. As seen in Sec-
tion 2.2, using this option, interrupt handling of that line is
implemented without threads. Latencies Lirq and Lact were

measured using the Time Stamp Counter (TSC), which pro-
vided a precision of less than 30ns (88 cycles) in our tests.
As mentioned earlier, station ST was used to trigger 20Hz

events at station SM . The measured data were the result of
running the experiments for ten minutes for each experiment
type and platform.

Experimental results are presented through graphs in which
the horizontal axes represent the instant at which the laten-
cies were measured, which ranges from 0 to 60 seconds. The
vertical axes represent the measured latencies in µs. These
values can be multiplied by 2.6103 to obtain the correspond-
ing number of TSC cycles. Values outside the vertical axis
range are represented by a triangle near the maximum value.
Below each graph the following values are given: Mean (M),
Standard Deviation (SD), minimum (Mn) and maximum
(Mx). These numbers were obtained considering the dura-
tion of ten minutes of each experiment run. Although each
experiment was run for ten minutes, one-minute time win-
dow was found sufficient to illustrate the timing behavior of
each platform. During this time interval, the total number
of events is 1 200 as the arrival frequency of Ethernet frames
at the eth0 network device of station SM is 20Hz.

We first present in Section 4.1 the results from the first ex-
periment. Then, in Section 4.2, we analyze the procedure
suggested by the second experiment. Section 4.3 discusses
the results obtained by these two experiments.

4.1 First Experiment
For the sake of illustration, we first discuss the results re-
garding LinuxStd. Then, we present the measurements ob-
tained for the other platforms.

LinuxStd

As can be seen from Figure 5, the obtained values without
load show that interrupt handling in Linux is reasonably
efficient. As it will be seen shortly, these values are very
close to some RTOS platforms. However, both Lirq and
Lact vary significantly in the presence of load, as expected.
In particular, the obtained values of Lact in load scenarios
confirm that LinuxStd is not suitable to support real-time
systems. Indeed, the maximum value of Lact was found to
be about 17 times the mean value.
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5: LinuxStd latencies. The eth0 interrupt handler is triggered by packets arriving at a 20Hz frequency.

LinuxPrt, LinuxPrtND and LinuxXen

Figures 6 and 7 plot the values of Lirq and Lact, respectively.
Six graphs are shown in each Figure. The right and left
columns show results with and without load, respectively.

As for the interrupt latencies (see Figure 6), LinuxXen clearly
shows higher predictability when compared to the other plat-
forms. Under load scenarios, this behavior is evident as it
can be noticed by the lower mean and standard deviation
values. In order to explain the behavior of LinuxPrt, some
aspects need to be explained. First, when IRQF_NODELAY is
set, the behavior of LinuxPrt turns to be similar to LinuxStd,
although LinuxPrt exhibits better results. On the other
hand , using threads for interrupt handling increases the in-
terrupt latency due to an extra context-switching overhead.
Also, a significantly higher variability on latency values hap-
pens when the system is overloaded. This can be explained
by the execution delay of the handler. Indeed, between the
instant at which ISRPP issues the interrupt and the instant
at which the IRQ thread actually wakes up, several inter-
rupts may occur. In such a scenario, the execution of related
interrupt handlers may delay the execution of ISRPP .

Figure 7 shows activation latencies with and without load. It
is worth noting the behavior of LinuxPrt and LinuxXen with
load. Despite the mean value found for LinuxXen (8, 7µs) is
greater than the one found for LinuxPrt (3, 8µs), the stan-
dard deviation is significantly lower in favor of LinuxXen.
In fact, this is a desirable feature in hard real-time systems.
Additionally, for such systems, it is desirable that the worst-
case execution time be as close as possible to the average-
case execution time.

By analyzing the values of activation latencies of LinuxPrtND,
it can be noticed that those values are acceptable when com-
pared to LinuxPrt in the absence of load. Nonetheless, the
results obtained in load scenarios still indicate a slight less
predictable behavior than LinuxXen.

4.2 Second Experiment
As will be seen, the timing patterns obtained by the second
experiment were similar to those described in the previous
section. In order to avoid repeating the illustration of such
patterns, we summarized these results in Table 1, which is
presented in Section 4.3.
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(c) LinuxPrt - without load, option IRQF_NODELAY
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(d) LinuxPrt - with load, option IRQF_NODELAY
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(e) LinuxXen - without load
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(f) LinuxXen - with load

M: 10.2, SD: 0.1, Mn: 8.8, Mx: 20.8

6: Interrupt latencies. The eth0 interrupt handler is triggered by packets arriving at a 20Hz frequency.
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(c) LinuxPrt - without load, option IRQF_NODELAY
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(f) LinuxXen - with load

M: 8.7, SD: 0.3, Mn: 1.8, Mx: 18.7

7: Activation latencies. The eth0 interrupt handler is triggered by packets arriving at a 20Hz frequency.



0.0

5.0

10.0

15.0

20.0

25.0

0 10 20 30 40 50 60

L
a
te

n
cy

(µ
s
)

Time (s)

(a) LinuxXen - Interrupt latency - without load

M: 9.1, SD: 0.3, Mn: 9.8, Mx: 13.4
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(b) LinuxXen - Interrupt latency - with load

M: 11.3, SD: 1.2, Mn: 9.0, Mx: 19.7
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(c) LinuxXen - Activation latency - without load

M: 4.0, SD: 0.3, Mn: 0.3, Mx: 9.6
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(d) LinuxXen - Activation latency - with load

M: 9.8, SD: 2.0, Mn: 2.7, Mx: 20.8

8: LinuxXen latencies. Interrupt requests at SM are triggered at a 20Hz frequency by ST .

Before presenting these results, though, we first illustrate
the differences between both types of experiments. To do
so, we discuss the results regarding LinuxXen only. This
platform serves well for our illustration purposes because:
(i) the results of the first experiment have indicated that
LinuxXen is more predictable than the other platforms; (ii)
station ST was configured to use LinuxXen. The results for
LinuxXen are plotted in Figure 8 and will be discussed in
Sections 4.2 and 4.2.

Interrupt latencies in LinuxXen

According to the experiment setup, the measurements are
carried out by station ST (as shown by Figure 3). As ex-
plained in Section 3.2, there is an extra delay δ that must be
considered in the measurements. This delay corresponds to
the value of Lirq in ST . In other words, since LinuxXen is be-
ing used in both stations, one expects measuring t2−t1 = 2δ

in scenarios without load. From this measurement, the value
of δ, estimated through the first experiment can be con-
firmed. Figure 8a shows the values of Lirq minus the mean
value of δ, estimated to be 9.0µs. As can be seen, these
values equal 9.1µs with a standard deviation of 0.3.

Once δ is subtracted from the other results plotted in Figure
8b, it can be seen that the system behaves very similarly to
the first experiment. A noticeable difference is a significant
increase of the standard deviation. This can be explained
as follows. In the first experiment, ISReth0

issues an in-
terrupt request and then finishes its execution. The pend-
ing interrupt is immediately detected and the execution of
the associated handler begins with a minimum delay since
the indirection scheme of the Adeos nanokernel guarantees
that no other interruption can delay the start of ISRPP .
Such scenarios do not occur in the second experiment since
the parallel port interrupts are externally triggered by ST .
Therefore, possible interference in the interrupt handler ex-
ecution can be caused by context-switching overhead. As a
result, the second experiment captures actual scenarios of
interrupt latencies more accurately, as can be seen from the
higher variability of the obtained results.

Activation latencies in LinuxXen

Two aspects must be considered when measuring activation
latencies by the second experiment (as shown by Figure 3).
Both aspects are dealt with by our experiment set-up.



1: Latency results in µs for LinuxStd, LinuxPrt, LinuxPrtND and LinuxXen using Experiments 1 and 2.

LinuxStd LinuxPrt LinuxPrtND LinuxXen

Load no yes no yes no yes no yes

Lirq Lact Lirq Lact Lirq Lact Lirq Lact Lirq Lact Lirq Lact Lirq Lact Lirq Lact

E
x
p
.

1 Mean 8.9 4.6 10.4 37.3 21.5 2.1 58.5 3.8 8.9 5.3 10.6 8.0 9.0 2.1 10.2 8.7

SD 0.3 0.4 1.9 48.2 1.7 0.2 26.4 2.8 0.2 0.3 1.6 2.0 0.1 0.5 0.1 0.3

Min 8.7 4.4 8.8 4.6 20.3 1.2 17.2 1.1 8.8 5.0 8.9 5.2 8.8 1.8 8.8 1.8

Max 18.4 16.2 67.7 617.5 45.1 9.4 245.9 27.4 16.7 13.1 35.8 31.0 11.1 8.4 20.8 18.7

E
x
p
.

2 Mean 9.0 3.6 12.5 19.9 10.2 3.7 31.2 7.2 9.2 4.6 11.8 14.9 9.1 4.0 11.3 9.8

SD 0.4 0.6 3.2 17.4 0.5 0.4 19.0 3.1 0.4 0.5 2.3 5.6 0.3 0.3 1.2 2.0

Min 8.8 -1.3 9.0 2.3 10.0 0.8 10.4 2.2 8.9 -0.3 9.1 4.5 8.8 0.3 9.0 2.7

Max 18.4 19.0 75.0 428.4 30.8 12.7 203.9 21.2 14.9 14.2 49.2 85.0 13.4 9.6 19.7 11.8

First, as mentioned earlier, the interrupt request issued by τ

may take place before or after t2, turning the value of t3− t2
into an imprecise measurement. For example, if τ issues an
interrupt request at ST before t2, this request will be trig-
gered before the handling of the pending interrupt requested
by ISRPP at ST . Thus, these two requests will be handled
in a row, which makes the value of t3 − t2 too short. On the
other hand, if the interrupt request by τ takes place after
t2, as represented in Figure 3, this undesirable interference
disappears and t3 − t2 turns to be an accurate measurement
of Lirq . In order to circumvent this measurement problem,
an extra and constant delay of ∆ = 10µs was introduced
so that the interrupt request issued by τ always takes place
after t2.

The second aspect is due to the interrupt latency variability
at ST . As this station runs LinuxXen, it was seen in the first
experiment that Lirq ∈ [8.8, 11.1] when no load scenarios are
considered. This means that when measuring Lact, one can
obtain values (t3 − t2) ± 2.3µs in worst case.

The graphs in Figure 8c show the activation latencies ob-
tained by the described approach. The values are already
subtracted by 10µs and so they correspond to the measured
values of Lact. The obtained values in the graphs are very
close to the ones obtained by the first experiment as can be
seen by the small differences between the mean values. Also,
as expected, the variability is now higher due to the way the
experiment was set up.

4.3 Comparative Analysis
Table 1 summarizes the results regarding all analyzed plat-
forms. Both types of experiments are reported. As can be
seen, their results can be used for comparing the platform
behaviors using either experiment, as mentioned before.

As expected, the data obtained for LinuxStd indicate that it
is not suitable to deal with real-time systems. Load scenarios
make the interrupt and activation latencies much larger than
the observed mean values.

As observed before, the way LinuxPrt deals with interrupt
request may cause excessive delays in interrupt latencies in
load scenarios. This behavior is verified in both experiments.

When option IRQF_NODELAY is used, the obtained values
show a behavior similar to LinuxStd in both experiments,
although LinuxPrtND seems much efficient.

It is interesting to notice that there have been negative val-
ues of activation latencies as for the second experiment.
This can be explained by the variability of δ at station
ST (recall section 4.2). For example, consider that δ ∈

[δmin, δmax]. Also, recall that there is a constant delay of
∆ introduced in the measurement. Hence, t3 − t2 − ∆ ∈

[δmin − δmax, δmax − δmin]. Since in our experiments it was
observed that δmin = 8.8µs and δmax = 11.1µs, a negative
value may be found whenever the actual Lact ≤ 2.3µs. How-
ever, it is important to emphasize that we rarely observed
negative values during the experiments, only once in 12 000
measurements.

Among the analyzed platforms LinuxXen shows higher pre-
dictability levels when compared to the other platforms.
This characteristic is of paramount importance when it comes
to supporting real-time systems. It is worth emphasizing
that for such systems predictability is preferable than speed.
Thus, although the mean values obtained by LinuxPrt are
smaller, LinuxXen seems a better alternative when predic-
tability is aimed for.

Since LinuxXen presented the best results in our previous
experiments, we decided to run the second experiment dur-
ing a longer period to see how stable this system would be.
Thus, we ran the second experiment for 14 hours with the
same load scenarios presented earlier. This setup generated
more than 1 million events. The histogram of Figure 4.3
presents the number of events per activation and interrupt
latencies in 1 µs steps on a logarithmic scale. From this
figure, we see that over 100, 000 events had both activation
and interrupt latencies within [10, 11] µs. Although some
worst-case latencies are greater than those observed in the
corresponding 10-minute experiments, these were very rare
events.

5. RELATED WORK
Some experimental results comparing LinuxPrt and LinuxStd

are presented in [16]. They measured interrupt and schedul-
ing latencies of a periodic task. However, their experiments
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9: 1,000,000 events histogram for LinuxXen. Each
histogram, log-scaled, corresponds to the number of events
in the 1µs interval beginning at the corresponding x-value.

were conducted without processor load and the methodology
used was not precisely described. Siro et al [18] compares
LinuxPrt, RT-Linux [2] and LinuxRTAI [6] with LMbench
[12] by measuring the scheduling deviation of a periodic task.
The authors tested the systems with a load overhead, but
they did not consider interrupt load. In their website, the
developers of the Adeos project [3] present some comparative
results for Preempt-RT and Adeos. In their evaluation, they
used LMbench [12] to characterize the performance of the
two platforms and measured the interrupt latencies gathered
from the parallel port.

The interrupt latency results of our work are similar to those
obtained by Benoit et al [3] for LinuxXen. However, our re-
sults differ from their work for LinuxPrt since we noticed
some degradation of time guarantees by this platform, as
reported in Sections 4.2 and 4.3. Regarding activation la-
tencies under load scenarios, we are not aware of any other
comparative work. Experiments similar to those reported
here were conducted for LinuxRTAI [15]. As expected, the
obtained results are similar to those presented for LinuxXen,
since both platforms use Adeos nanokernel.

6. CONCLUSION
In this work, we have conducted a comparative evaluation of
two Linux-based RTOS. Our comparative methodology has
allowed experimental measurements of interrupt and acti-
vation latencies in scenarios of variable load. Load of both
processing and those due to interrupt handling have been
considered. Two experiments have been defined. In the
simpler one, the same station that deals with real-time ac-
tivities is responsible for the measurements. In the second,
the measurements are carried out externally, by a different
station. Both experiments can be used for comparison pur-
poses although the second one gives the values of interrupt
latencies more accurately.

While standard Linux presented latencies in the worst case
over 100µs, the platforms LinuxPrt and LinuxXen managed
to provide temporal guarantees with a precision below 20µs.
However, in order to achieve this behavior with LinuxPrt, it
was necessary to disable the interruption threading for the

parallel port interrupt line, making the system less flexible.
With a threaded implementation, the behavior of LinuxPrt

suffers considerable deterioration of its temporal predictabil-
ity. LinuxXen was found more appropriate since offers a
user-mode programming environment as well as better tem-
poral predictability, a desirable characteritic for supporting
real-time systems.
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