
A TLA+ Formal Specification and Verification
of a New Real-Time Communication Protocol ∗

Paul Regnier 1, George Lima 1, Aline Andrade 1

1Laboratório de Sistemas Distribuídos (LaSiD) – Universidade Federal da Bahia (UFBA)
Caixa Postal 40.170 – 110 – Salvador – Bahia – Brazil

{pregnier,gmlima,aline}@ufba.br

Abstract. We describe the formal specification and verification of a new fault-
tolerant real-time communication protocol, called DoRiS, which is designed
for supporting distributed real-time systems that use a shared high-bandwidth
medium. Since such a kind of protocol is reasonably complex and requires high
levels of confidence on both timing and safety properties, formal methods are
useful. Indeed, the design of DoRiS was strongly based on formal methods,
where the TLA+ language and its associated model-checker TLC were the sup-
porting design tool. The protocol conception was improved by using information
provided by its formal specification and verification. In the end, a precise and
highly reliable protocol description is provided.

1. Introduction

New automation and control systems are characterized by the need of high levels of flex-
ibility and service integration in addition to their usual requirements such as fault tol-
erance and predictability. This has motivated the development of new communication
protocols based on high-bandwidth medium, such as Ethernet or Wireless. Interested
readers can find good surveys on this topic [Decotignie 2005, Hanssen and Jansen 2003,
Marau et al. 2006].

Since designing is a reasonable complex task, the use of formal methods plays
an important role to guarantee correct design and reliable implementation. Motivated by
noticeable advances in the field [Clarke et al. 1999, Henzinger et al. 1992], formal meth-
ods have increasingly been applied in the study and verification of many of these com-
munication protocols [Johnson et al. 2004, Narayana et al. 2006, Barboza et al. 2006,
Hanssen et al. 2006], some of which with real-time characteristics.

Presenting the case study of the specification and verification of a new real-time
communication protocol, called DoRiS (a Double Ring Service protocol for Real-Time
Systems), we illustrate how formal methods can help the design of the protocol as well as
its implementation. We have used here the Temporal Logic of Actions and its associated
language TLA+ [Lamport 2002]. Our choice of TLA+ to specify and verify DoRiS was
motivated by the following reasons. TLA+ provides a modular structure which allows for
an incremental process of specification refinements, according to the abstraction level re-
quired. Thus, a concrete specification, close to the code level, can be achievable. Also, the

∗This work has received funding support from the Brazilian funding agencies CNPq (Grant number
475851/2006-4) and FAPESB (Grant number 7630/2006).

TLC model-checker provides an automatic verification of the specification and its prop-
erties. Hence, the use of TLA+ has allowed us to carry out both the conception and the
specification of DoRiS interactively and progressively as an integrated software engineer-
ing process. We present here the final specification and model-checking of DoRiS, which
has been successfully used as a basis for the protocol implementation on a Linux-based
real-time platform [Regnier 2008].

The remainder of this paper is structured as follows. The protocol is outlined in
Section 2. Section 3 gives our modeling assumptions and some initial concepts on TLA+
before addressing the description of the specification itself. Some relevant properties of
DoRiS are shown by formal verification. They are commented upon Section 4. In Section
5, we also comment on how the formal specification has been useful during the design of
DoRiS. Conclusions are drawn in Section 6.

2. The DoRiS protocol
DoRiS is a deterministic protocol built on top of a shared medium communication layer.
The protocol works as a logical layer, extending the MAC and LLC layer [IEEE 2001]. It
is designed to support hybrid systems where industrial sensors, actuators and controllers
share the communication network with other soft applications. In such a hybrid config-
uration, the processing speed and the communication characteristics of the two types of
application may differ considerably [Carreiro et al. 2003]. Thus, we assume that a num-
ber of industrial appliances (micro-controllers, sensors etc), called hereafter slow nodes,
have low processing times when compared to fast nodes such as workstations.

2.1. The model and terminology
The set of nodes (slow or fast) connected through a shared medium make up a DoRiS
segment. Although many DoRiS segments can be inter-connected by switches or routers,
we will restrict our specification and verification to a single DoRiS segment.

At each node, a server is responsible for the transmission of hard real-time and
best-effort messages. Slow nodes send only hard real-time messages and fast nodes may
send both hard and best-effort messages. Each server maintains a hard queue, which
stores hard real-time messages to be sent. Fast servers also maintain a soft queue, which
stores outgoing best-effort messages. Although there is only a single server in each node,
we define HardServ [i] and SoftServ [i], the two server threads of node i dealing with
the hard and soft queues, respectively. As there may be many processes executing on
a node, some local priority policy has to be defined to schedule messages of different
applications. However, this topic is beyond this paper scope, which is focused only on the
communication aspects.

We define nServ as the total number of servers and ServID = {1, 2, . . . , nServ},
as the corresponding set of identifiers. HardServ and SoftServ are identified by the el-
ements of ServID . The sets of HardServ and SoftServ , respectively denoted HardRing

and SoftRing , define the two logical rings of a DoRiS segment, where a single token
rotates. As all servers must participate in the hard communication, HardRing equals
ServID while SoftRing is a subset of ServID .

Messages from slow nodes are short, usually periodic, and have hard real-time
constraints. Such messages, called hard messages, are assumed to have a constant length

A DoRiS cycle (nServ ∗ ∆C)

cycle

SRSE

WH

chipchip chipchips

cycle

WS

C-RdM-Rd

Figure 1. The DoRiS Time Division Scheme

denoted l (e.g. l = 64B over Ethernet). They are processed upon reception by the
servers within a maximum processing time, denoted π, which is associated to worst-
case processing time of slow nodes. Hard messages are transmitted through the network
within a maximum transmission time δ � π. The communication medium can be under-
utilized if only slow nodes are present in the DoRiS segment. However, if there are fast
nodes sharing the medium, DoRiS allows them to use this spare bandwidth. Messages
exchanged by fast nodes, called soft messages, have a variable length denoted L, usually
larger than l . (e.g. l 6 L 6 1500B over Ethernet).

We assume a synchronous distributed system. Thus, actions taken by nodes can
be synchronized with each other. This assumption is based on the time division scheme of
DoRiS, which, as will be seen, has regular and predictable points of synchronism which
take place within a small time window. This implies that node clocks are synchronized.
We also assume that nodes may crash and transmitted messages may be lost. If some
part of the message is altered, by electromagnetic interference for example, it is assumed
that a checksum test is performed by the receiver, allowing it to transform this fault in an
omission by simply discarding the erroneous message.

2.2. The Medium Access Control Scheme
The time of the communication on a DoRiS segment is divided into a series of communi-
cation rounds (C-Rd) and membership rounds (M-Rd), as illustrated in Figure 1. During
M-Rd, the membership control algorithm is responsible for keeping a common member-
ship view before the communication round begins. Since the focus of the specification is
on the communication rounds, the membership round will not be further described and
we consider hereafter a fixed and shared value of nServ .

Using TDMA (Time Division Multiple Access), each C-Rd is defined as an arbi-
trary but fixed number of periodic cycles, which in turn are subdivided into exactly nServ
chips (see Figure 1). Each of these chips is subdivided into two windows, hard and soft,
denotedWH andWS , respectively, which are associated with hard and non-hard real-time
traffics. Hard servers send messages in WH and soft servers use WS to transmit theirs.
The sizes of WH and WS are denoted ∆H and ∆S , respectively, and the chip size is de-
fined by ∆C = ∆H + ∆S . To allow for some flexibility and message scheduling policy,

each hard real-time window WH is further divided into two slots, the elementary (SE)
and the reservation (SR) slots. Messages sent in these two slots are hard messages, called
elementary and reservation messages, respectively. Once per cycle each hard server sends
an elementary message in SE while SR is used to implement a reservation mechanism.
In order to tolerate crash failure and provide reliability for the whole system, elementary
messages are mandatory.

The reservation mechanism works as follows. Each elementary message sent by
a hard server i carries a list of slots this server is interested in for transmitting additional
messages. This list contains the identifiers of such reservation slots in the next nServ
chips. Hard server i is only allowed to reserve a slot if two conditions hold: (i) such a
slot has not been reserved by another server; and (ii) hard server i is in a consistent state.
Condition (ii) holds if i has received the previous nServ elementary messages. Conse-
quently, such a dynamic slot allocation scheme is tolerant to message omissions. This
reservation mechanism is an innovation of DoRiS and allows applications to implement
some scheduling policy. Indeed, a hard server has the right to use an elementary slot per
cycle and may use up to nServ − 1 other slots.

The medium access control of DoRiS is regulated by an implicit token, which ro-
tates in the hard and soft rings (Section 2.1), according to timing and/or logical conditions
built upon observed communication activities. A pure TDMA scheme is used to isolate
the two rings of DoRiS. As for the soft ring scheme, the process group membership is
dynamically managed using the following mechanism. Elementary messages contain a
bit which, whenever set, informs all servers that the sending server will thenceforth par-
ticipate of the soft ring. When the soft queue of a server gets empty, it simply unsets the
bit flag of its elementary message. During WS , the token rotates, according to the soft
ring order, whenever an interruption is issued by the medium device.

3. The specification
In this section we give a detailed top-down description of the DoRiS specification even
though we present only the most relevant protocol actions for the sake of space.1

In the specification, time varies by discrete unity. Although such a discrete
representation can compromise the model accuracy of asynchronous systems in gen-
eral [Clarke et al. 1999], it is acceptable for synchronous message-passing protocols
[Lamport and Melliar-Smith 2005]. We also consider that whenever a specified action
gets enabled, it either happens without delay or is immediately disabled. This implies
that timers are specified with null jitter. Further, since we assume a synchronous model
and to avoid the specification of clock synchronization details, we consider that all nodes
share a common global clock. Note that elementary messages are mandatory and frequent
enough in comparison with the maximum drift of clocks so that all nodes can synchronize
their local clocks with high precision and accuracy, even in the presence of a few message
omissions. Before stepping into the specification, some concepts on TLA+ are given.

3.1. Concepts on TLA+
The Temporal Logic of Actions (TLA) and its associated formal language (TLA+) com-
bine the Temporal Logic of TLA [Lamport 2002] with the expressiveness of predicate

1The complete specification is available at http://www.lasid.ufba.br/publicacoes/reltec/DoRiS.zip

logic and Zermelo-Fraenkel set theory. Equipped with its associated model-checker,
TLC [Yu et al. 1999], one can specify and verify both hardware and distributed proto-
cols. In this section, we present some basic syntax of TLA+. Other information on TLA+
will be given along with the description of the DoRiS specification. Readers interested in a
comprehensive description of TLA+ can refer to Lamport’s publication [Lamport 2002].

In a TLA+ specification, a computation of a system is represented as a sequence
of states. A state of the system is an assignment of constant values to variables and a
sequence of states is called a behavior which describes a history. A pair of consecutive
states, i and f say, is named a step, denoted i → f . The prime (′) operator is used to
distinguish the values of variables on a step. Considering a given step S : i → f and
assuming a variable v on S, the unprimed occurrence (v) refers to its value in i while the
primed occurrence (v ′) refers to its value in f .

A state predicate is a boolean expression where only unprimed variables occur. A
transition function on a step is an expression where primed and unprimed variables occur.
For example, if step S is such that v = 0 in i and v = 1 in f , the transition function
[v ′−v] equals 1 on S . Finally, an action is defined as a boolean-valued transition function
on steps. In our example, the action defined by [v ′ = v +1] is true of step S . Note that for
a given step S , the next-state relation from state i to state f , usually called state transition
function in Finite State Machine formalism, is defined by the set of actions defined on S .
As an action can be made up of several other actions, this set is also an action.

TLA+ temporal formulas are boolean assertions about behaviors. A behavior sat-
isfies a formula F if F is a true assertion of this behavior. The temporal logic operator 2

is used to define the transition relationship between states. The semantic of 2 is defined as
follows: for some behavior Σ and some action A, the temporal formula Spec = 2[A]vars
is true - or simply “Σ satisfies Spec” - if and only if for any step S : i → f of Σ that
changes the tuple vars of all flexible variables, A is true on S .

3.2. Constants and Variables

In order to define a model of the system, a TLA+ specification makes use of constants
and variables. The following six constants were used here: (i) nServ , the DoRiS server
number; (ii) deltaChip, the duration ∆C of a chip; (iii) delta, the transmission time δ of
a hard message; (iv) pi , the processing time π of a hard message by the slowest device
of the DoRiS segment; (v) maxTxTime, the transmission time of the largest message
(1524 bytes for Ethernet); (vi) horizon, the upper bound on the number of cycles used
for model-checking. Observe that two hard messages can be sent in each chip. Thus, the
value of ∆C was chosen such that the processing of two hard messages is feasible during
a single chip. This restriction implies that ∆C > 2 ∗ π. Other constants may be defined
using the “ ∆

= ” symbol. For instance, the set of servers identifiers ServID , is defined by
ServID

∆
= 1 . . nServ , where for i < j , i . . j

∆
= {i , i + 1, . . . , j}.

The attributes of DoRiS are grouped into four variables, called Shared , HardState,
SoftState and History . Shared is used to represent the common vision of the system
shared by all servers. It is made up of six fields: (i) soft holds the current soft ring mem-
bership; (ii) chipTimer is an increasing and cyclic timer that range from 0 to deltaChip;
(iii) chipCount is an increasing and cyclic modulo-nServ counter, which holds the value
of the on-going chip. This counter is periodically incremented by the action NextChip

whenever chipTimer times out at the end of each chip (as will be seen in Section 3.6). (iv)
cycleCount is an increasing and cyclic horizon-modulo counter; (v) medium represents
the physical medium state. If no message is being transmitted, medium equals {}. Other-
wise, medium stores the message being transmitted. (vi) macTimer is a counting-down
timer, which represents the message transmission time. It equals 0 when the medium is
idle. Otherwise, it equals the remaining time to finish an on-going message transmission.

Both HardState and SoftState are nServ -tuples whose fields are used to store
the local state information of each server. HardState has four fields: (i) msg is the list
of hard messages stored in local buffers after their reception by the network device; (ii)
execTimer is a decreasing timer that specifies the time remaining to complete the pro-
cessing of a hard message; (iii) res is the reservation list for the nServ next chips; (iv)
cons is a counter that represents the number of elementary messages received in a com-
plete DoRiS cycle. SoftState has three fields: (i) token is a counter used to control the
token circulation duringWS ; (ii) list is the list of soft messages waiting to be transmitted;
(iii) count is the number of soft messages received during WS .

Finally, History is an observer variable used to check specific temporal properties.
It has two fields: (i) elem is the number of elementary messages sent in a cycle, and; (ii)
rese is the number of reservation messages sent in a cycle.

3.3. The main formula Spec

DoRiS main formula, shown in Figure 2, describes the behaviors of the system through the
definition of the set of initial states, called Init, the next-state relation, here based on the
disjunct of the two actions, Next or Tick, and a liveness constraint. A behavior Σ satisfies
Spec iff the first state of Σ satisfies Init and every step of Σ satisfies either Next or Tick
and the Liveness condition, defined by Liveness

∆
= 23Tick . This box formula ensures

that a behavior that satisfies Spec eventually progress. In addition, due to the circular time
representation, behaviors that satisfy Spec are periodic, allowing for the model-checking
of some finite models.

Next
∆= ∨ ∃ s ∈ HardRing : ElemSend(s) ∨ ReseSend(s)

∨ ∃ t ∈ SoftRing(Shared .soft) : SoftSend(t)
∨ ∃msg ∈ Shared .medium : Receive(msg)

Spec
∆= Init ∧ 2[Next ∨ Tick]vars ∧ Liveness

Figure 2. The Next and Spec formulas

• Init − The Init predicate defines the initial protocol states by assigning values
to all variables used in the specification. Since Init is a long formula that does not describe
functionalities of the protocol, it is omitted here.

• Next − This action, also shown in Figure 2, describes the protocol functionali-
ties that leaves time unchanged. The first line of this formula describes the hard ring send-
ing services. It states that a given hard server s may take one of two actions, ElemSend(s)
or ReseSend(s). These actions describe the transmission of an elementary message or a
reservation message, respectively. The soft ring sending service is specified in the second
line of the formula by means of the SoftSend(t) action. A soft server t may take the

ElemSend(t) step if it is a member of the soft server group (soft field of the Shared vari-
able). Finally, the third line specifies the reception action that can take place whenever
some message is available in the medium. Actually, as will be seen, this action takes two
distinct formulations depending on whether the incoming message is hard or soft. If no
state satisfies the enabling conditions of these five actions, the only remaining possibility
is the Tick action, unless deadlock has been reached.

• Tick − This action, defined as Tick ∆
= NextTick ∨ NextChip, represents the

flow of time. To allow for the verification of some finite model, despite the unbounded
nature of time, we use a circular time representation by defining the Tick action as a
disjunction of two actions: NextTick , which increments the timers by discrete steps, and
NextChip, which implements the time circularity.

3.4. The Hard Ring
The actions that specify the hard ring are described in this section.

• ElemSend − This action, shown in Figure 3, describes the rules used to send
elementary messages. The three enabling predicates of the ElemSend formula state that
task t is allowed to send a message when: (i) the previous transmission has finished
(medium = {}); (ii) the chip is starting (chipTimer = 0); and (iii) hard server s has
the token (i = ChipCount). Note the use of the construct LET to define local variables.
Here, the hardID(s) function is used to define the identifier value i of server s , and �ag is
set to 1 whenever some soft message is waiting to be sent. These three conditions ensure
that s only sends one elementary message per DoRiS cycle.

ElemSend(s) ∆= Shared .medium = {}
∧ Shared .chipTimer = 0
∧ LET i

∆= hardID(s)
�ag

∆= IF SoftState[i].list 6= 〈〉 THEN 1 ELSE 0
IN ∧ Shared .chipCount = i

∧ LET resSet
∆= reservation(i)

IN ∧ Shared ′ = [Shared EXCEPT !.macTimer = delta,
!.medium = {[id 7→ i , type 7→ “hard”, res 7→ resSet , softFlag 7→ �ag]}]

∧ HardState ′ = [HardState EXCEPT ![i].cons[i] = 1,
![i].res = [j ∈ ServID 7→ IF j ∈ resSet THEN i ELSE @[j]]]

∧ SoftState ′ = [SoftState EXCEPT ![i].token = IF �ag = 0 THEN − 1 ELSE @]
∧ History ′ = [History EXCEPT !.elem = @ + 1]

Figure 3. The ElemSend action

Two others TLA+ constructs appear here. First, indentation is preferred instead of
parenthesis. Hence, the operators ∧ and ∨ are used to construct meaningful indented lists.
Second, a TLA+ expression like SoftState ′ = [SoftState EXCEPT ![i].token = − 1]
means that the record SoftState remains unchanged except for the entry i of its field
token, which is set to −1.

As can be seen, the action ElemSend changes the values of the fields macTimer ,
medium, res and token of the Shared , SoftState and HardState variables (primed vari-
ables). macTimer assumes the value of δ, the time it takes to transmit a hard message
and medium is filled with the elementary message sent by s . Such a message piggybacks

the sender identifier, its type, which can be either “hard” or “soft”, a reservation set, and
the value of the softFlag that indicates whether s will participate of the next WS .

In the second “LET . . . IN” construct, the reservation function is used to gener-
ate resSet , the reservation list of s , which indicates the slots s will be interested in for
transmitting additional messages. Its definition depends on the needs of the server for
extra-bandwidth. For simplicity, we assumed here that all servers try to reserve the max-
imum number of reservation slots. Recalling Section 2.2, a server can do so if it is in a
consistent state (has received all previous nServ elementary messages) and the slots are
still not reserved. If s is inconsistent, it is still allowed to carry out the reservation of
SR of chip i in the next cycle as no other server could have reserved such a slot before.
The reservation function is not shown here since it is related to the application layer.

The field cons of HardState[i] is a tuple of flags that keeps track of the elementary
messages received by each server. The entry cons [j] is set to 1 whenever an elementary
message sent by server j is received by server i or when server i = j sends its elementary
message. When an elementary message sent by j is omitted at server i , the corresponding
entry of tuple HardState[i].cons [j] remains null, allowing for the detection of the failure.
As will be seen, the action NextTick resets all values of cons [Shared .chipCount] to 0.

Finally, the token counter is updated. This counter is used to define the rules of
the soft communication as will be seen in Section 3.5. If �ag equals 0, token is set to −1,
as server s will not participate of the soft communication in the next cycle.

The field res of HardState[i] stores the reservation view of server i . Action
ElemSend keeps res [j] unchanged if no reservation is sent by i for slot j , otherwise it
sets its value to i . The definition of HardState[i].res makes use of the exception clause
to state that res is only updated regarding entry i , according to resSet , the reservation set
provided by the function reservation. In an exception clause, the @ symbol stands for the
original value of the variable, which here is HardState[i].res [j]. The symbol 7→ is used to
assign values to the entries of a record. Here, all entries j ∈ ServID of HardState ′[i].res
are updated.

ReseSend(s) ∆= Shared .medium = {}
∧ Shared .chipTimer = delta

∧ LET i
∆= hardID(s)

IN ∧ HardState[i].res[Shared .chipCount] = i

∧ Shared ′ = [Shared EXCEPT
!.macTimer = delta, !.medium = {[id 7→ i , type 7→ “hard”, res 7→ { − 1}]}]

∧ HardState ′ = [j ∈ ServID 7→ [HardState[j] EXCEPT !.res[Shared .chipCount] = − 1]]
∧ History ′ = [History EXCEPT !.rese = @ + 1]
∧ UNCHANGED SoftState

Figure 4. The ReseSend action

• ReseSend − This action, shown in Figure 4, describes the emission of a reser-
vation message. The two first enabling predicates ensure that the medium is idle and that
SR has begun. Then, HardState[i].res [Shared .chipCount] = i states that server i has
a reservation for the on-going chip. In such a case, macTimer is set to δ to represent
the reservation message transmission time. Then, medium is filled with the reservation

message, which piggybacks its sender identifier, its message type, and the special value
{−1} as the reservation set. Since a reservation message cannot be used to make other
reservations, such a message carries the {−1} special value, which distinguishes it from
an elementary message. Then, the sender reservation list is updated by setting the corre-
sponding entry to -1. Finally, the UNCHANGED operator lists the variables whose values
are not updated by the action.

• Receive − This action, shown in Figure 5, describes the reception of a message.
Recall from definition of the Next action (see Figure 2) that Receive is enabled if there is
some message m in the medium. In such a case, when the transmission of m is completed
(macTimer = 0), its reception can happen. According to the message type (“hard” or
“soft”), either HardRecv or SoftRecv is enabled.

Receive(m) ∆= Shared .macTimer = 0
∧ CASE m.type = “hard” → HardRecv(m) 2 m.type = “soft” → SoftRecv(m)

Figure 5. The Receive action

• HardRecv − This action, shown in Figure 6, describes the reception of a hard
message. According to the information piggybacked on m, different updates of Shared
are chosen by the construct “CASE . . . → . . . ”. When the res field differs from {−1},
it means that m is an elementary message. In such a case, the soft group is updated,
according to the value of softFlag . If softFlag equals 1, the sender of m is added to the
soft group indicating that this node has a soft message to transmit. Otherwise, softFlag
equals 0, and the sender of m is deleted from the soft group. In this case, the tokenUpdate
action, not shown here for the sake of space, is used to update the token accordingly.

HardRecv(m) ∆=
∧ CASE m.res 6= { − 1} ∧ m.softFlag = 1

→ ∧ Shared ′ = [Shared EXCEPT !.medium = {}, !.soft = @ ∪ {m.id}]
∧ UNCHANGED SoftState

2 m.res 6= { − 1} ∧ m.softFlag = 0
→ ∧ Shared ′ = [Shared EXCEPT !.medium = {}, !.soft = @ \ {m.id}]

∧ tokenUpdate(m)
2 m.res = { − 1}
→ ∧ Shared ′ = [Shared EXCEPT !.medium = {}]

∧ UNCHANGED SoftState

∧ HardState ′ =
[i ∈ NoRecvSet(m) 7→ HardState[i]] @@
[i ∈ ServID \NoRecvSet(m) 7→ [HardState[i] EXCEPT !.msg = Append(@, m),

!.execTimer = IF Len(HardState[i].msg) = 0 THEN pi ELSE @,
!.cons[m.id] = IF m.res 6= { − 1} THEN 1 ELSE @,
!.res = IF m.res = { − 1}

THEN [j ∈ ServID 7→ IF j = m.id THEN − 1 ELSE @[j]]
ELSE [j ∈ ServID 7→ IF j ∈ m.res THEN m.id ELSE @[j]]]]

∧ UNCHANGED History

Figure 6. The HardRecv action

Also HardState is updated to represent the reception of a message. The modeling

of omission faults, specified by the NoRecvSet state function, is not detailed here since
it has a simple semantics. For some message m, the set NoRecvSet(m) was defined has
an arbitrary subset, possibly empty, of ServID . When an identifier i is an element of
NoRecvSet(m), a reception failure of m occurs at server i and the variable HardState

remains unchanged. Recall from action ElemSend (see Figure 3) that cons is a tuple of
the HardState variable, which is set to 1 whenever an elementary message is received.
Hence, the omission failure of receiving a hard message sent by server m.id implies that
cons [m.id] is not set and server i turns to be inconsistent. Its reservation capacity is then
limited (see Figure 3) and the server is not able to send soft message until it is consistent
again, as will be show shown when describing Figure 7.

When server i is not in NoRecvSet(m), m is received normally and the various
fields of HardState are updated. Message m then is appended to the msg list of incom-
ming messages and the associated timer execTimer is set to the maximum processing
time of m if it was not previously set. The entry m.id of cons is set to 1 to represent
the successful reception of an elementary message and, finally, the res field is updated,
according to the res set piggybacked on m.

As already mentioned, a hard message received by server i can either be an ele-
mentary or a reservation message. In the latter case (m.res = ResMsg{−1}), the reser-
vation list regarding the message sender must be reset to −1, accounting for the use of
the SR by the sender (m.src). Note that the tuple cons does not change since consistency
is related to the reception of elementary messages only. Conversely, when receiving an
elementary message, cons is reset and the reservation list is updated according to the list
carried by the received message.

3.5. The Soft Ring

In the soft ring, the token rotation is based on the observation of the past communication.
Hence, the soft token is incremented either when a soft message is received or when a soft
server is removed from the soft membership, as described in Figure 6.

• SoftSend − This action, shown in Figure 7, describes the emission of a soft
message. It gets enabled when the following four predicates hold: (i) a WS has begun;
(ii) it has not finished yet; (iii) the medium is empty; and (iv) server s holds the to-
ken. This latter predicate appears in the IN clause of the “LET . . . IN” construct, as it
makes use of the identifier i of the soft component of server s , defined by the function
softID(s , Shared .soft).

Whenever enabled, SoftSend sets lenTX , the transmission time of message msg
that server s wants to send. Then, the local variable d is defined to be the current value of
chipTimer plus lenTX . Three state predicates are defined: (i) consis , which is true when
no elementary message omission failure has occurred at s in the previous cycle; (ii) wait ,
which is true when s has to wait for the next WS , either due to lack of time to send msg

or because it is in an inconsistent state; (iii) noMsg , which is true either when wait is true
or when i ∈ Failed , where Failed is a set of current crashed servers. This set, also not
shown here, is defined as a function of the server identifiers and the value of chipCount .

Then the fields of Shared and SoftState are updated. If a message msg is sent,
macTimer is set to lenTX and medium is filled with msg . Otherwise, macTimer is

SoftSend(s) ∆= Shared .medium = {}
∧ 2 ∗ delta ≤ Shared .chipTimer ∧ Shared .chipTimer ≤ deltaChip

∧ LET i
∆= softID(s, Shared .soft)

lenTX
∆= lenMsg(i)

d
∆= Shared .chipTimer + lenTX

consis
∆= ∀ j ∈ ServID : HardState[i].cons[j] = 1

wait
∆= (d > deltaChip) ∨ (¬consis)

noMsg
∆= (i ∈ Failed) ∨ wait

IN ∧ i = SoftState[i].token
∧ Shared ′ = [Shared EXCEPT

!.macTimer = IF noMsg THEN In�nity ELSE lenTX ,
!.medium = IF noMsg THEN @ ELSE {[id 7→ i , type 7→ “soft”]}]

∧ SoftState ′ = [SoftState EXCEPT
![i].list = IF wait THEN @ ELSE tailList(@),
![i].token = CASE wait → @ 2¬consis → − 1 2OTHER → next(i , Shared .soft),
![i].count = IF noMsg THEN @ ELSE @ + 1]

∧ UNCHANGED 〈HardState, History〉

Figure 7. The SoftSend action

deactivated by setting it to infinity and medium remains unchanged.

As for SoftState, three fields are updated regarding server s whose identifier is
i . If a message is not transmitted due to lack of time, the field list is kept unchanged.
Otherwise, the sent message is deleted from the list by tailList . The fields token and
count of SoftState[i] also remain unchanged is no message is sent because of lack of
time. This means that i holds the right to transmit, waiting for the next WS . However, if
server s is inconsistent, its token field is set to −1, meaning that s is not allowed to send
message until it becomes consistent again. If a message is sent, the token is passed on to
the next server in the ring. Similarly, count needs to be incremented only if a message is
sent. This counter is used to avoid deadlock in the presence of omission failures, as will
be clear in the next section.

The SoftRecv action is similar to the HardRecv and is omitted here. Upon recep-
tion of a soft message, server i updates the value of token and increments count .

3.6. Time representation

The Tick action, composed of NextTick and NextChip, deals with the protocol progress.

• NextTick − This action, shown in Figure 8, regulates the passage of time.
As mentioned in Section 3, time is specified as an integer entity. However, in order
to minimize the generation of states during model-checking, the time increment d of a
NextTick step is defined as the minimum time value needed to enable a protocol action.
First, two conditions variables noRese and noSoft are defined. They represent scenarios
where a SR begins and no server has a reservation for this slot (noRese) and a WS begins
and no server has soft message to send (noSoft). Then, the set tmp is defined as the union
of the values of the execution timers associated to the processing of received messages by
slow nodes, and the remaining time before the end of the current chip, i.e. deltaChip −
chipTimer . Three cases must then be considered when defining d : (i) if noRese holds,
d = min(delta, tmp); (ii) if noSoft is true, d = tmp; otherwise (iii) d is the minimum

of tmp and the time to receive the next message. Cases (i) and (iii) are necessary for
avoiding deadlock conditions.

NextTick
∆=

LET noRese
∆= ∧ Shared .medium = {}

∧ Shared .chipTimer = delta

∧ ∀ i ∈ ServID : HardState[i].res[Shared .chipCount] 6= i

noSoft
∆= ∧ 2 ∗ delta ≤ Shared .chipTimer

∧ Shared .chipTimer ≤ deltaChip

∧ Shared .medium = {}
∧ ∀ j ∈ Shared .soft : SoftState[j].token 6= j

tmp
∆= {HardState[i].execTimer : i ∈ ServID} ∪ {deltaChip − Shared .chipTimer}

d
∆= CASE noRese → min({delta} ∪ tmp)

2 noSoft → min(tmp)
2 OTHER → min({Shared .macTimer} ∪ tmp)

IN d > 0 ∧ timerUpdate(d , noRese, noSoft) ∧ UNCHANGED 〈SoftState, History〉

Figure 8. The NextTick action

Once d is determined, the flow of time is represented by updating the value of
all timers, operation that is carried out by the timerUpdate action of the “IN” clause.
As timerUpdate is a simple formula, it is omitted here. Since all the other actions are
timed by at least one of these timers, this strategy is safe and efficient. Indeed, some
model-checking experiments we carried out showed that this strategy can speed up the
model-checking process significantly. This is because the time passes by quanta, stepping
from an enabled action to the next, without exploring unnecessary states.

• NextChip − This action, omitted here for the sake of space, is responsible for
the transition between a chip and its successor. It is enabled when the medium is empty
and when chipTimer has timed out (chipTimer = deltaChip). In such a case, a chip
has just finished and action NextChip resets the global counting-up timer chipTimer
and increments chipCount modulo nServ . When the next chip belongs to a new cycle,
cycleCount is incremented and the soft message list of each server is redefined. Note that
the circular time structure of DoRiS is specified by this action through the use of these
three fields, chipTimer , chipCount and cycleCount .

4. Verification
In this section we comment on the running cost obtained by running the TLC model-
checker [Yu et al. 1999] and on some relevant verified properties of the designed protocol.

4.1. Performance

In most of the TLC runs for the DoRiS specification, the execution time for some finite
models was found to be reasonable, although no comparison was made with other tools.
We have used a 2 Ghz Intel Core Duo processor using a java virtual machine with a 512M
heap size. Three performance metrics were considered: CPU user time (U); the total
number of generated distinct states (N); the diameter (D) of the reachability graph.2

2This latter metric is the smallest number d such that every state in the reachability graph can be reached
from an initial state by a path containing at most d states [Lamport 2002].

Table 1. TLC performance data for verifying the DoRiS specification.
Servers

2 4 6 8 10 12 14

U (seconds) 3 21 59 153 329 833 4, 117
N (#states) 853 2, 529 3, 565 5, 032 6, 430 8, 148 9, 540
D (#states) 850 2, 516 3, 486 5, 003 6, 392 8, 099 9, 482

Table 1 illustrates the data obtained for some configurations as a function of the
number of servers. As can be seen, verifying a model of DoRiS with 14 servers took about
4, 117 seconds to explore N = 9, 540 distinct states with reachability graph with diameter
D = 9, 482. It must be noted that D is close to N for all configurations. Three aspects of
the specification explain this good performance. First, all actions are guarded by temporal
predicates, reducing the number of explored states. Second, communication and fault
scenarios were fixed for a given verification. Third, the time increment strategy adopted
in the NextTick action (see Figure 8) reduced significantly the number of unnecessary
states. Indeed, we compared this strategy with a naive one that increments time by a unit
at each step. For a configuration with 6 servers, the naive strategy took 453 seconds to be
verified with N = 21, 604 and D = 11, 261. Using 14 servers, no answer was returned
by TLC after 20 hours of execution, indicating a rapid state explosion.

4.2. Verification of DoRiS properties
The absence of deadlocks is automatically checked by TLC. On the other hand, type
invariance are elementary properties to be specified. Instead of describing such basic
properties, this section focus on those more related to the protocol functionalities. More
specifically, the following relevant properties of the DoRiS protocol were verified: (i)
the protocol provides communication isolation, avoiding collisions; (ii) each task always
sends an elementary message per cycle and no task’s buffer overflow occurs; (iii) the
reservation mechanism is safe and correct; and (iv) soft communication fairness holds.
What follows is the specification of these properties.

Send(s) ∆= ∨ (s ∈ HardRing ∧ (ENABLED ElemSend(s) ∨ ENABLED ReseSend(s)))
∨ (s ∈ SoftRing(Shared .soft) ∧ ENABLED SoftSend(s))

CollisionAvoidance
∆= ∀ s, t ∈ HardRing ∪ SoftRing(ServID) :

2(ENABLED (Send(s) ∧ Send(t)) ⇒ (s = t))

NoCollisionAvoidance
∆= ∃ s, t ∈ HardRing ∪ SoftRing(ServID) :

3((s 6= t) ∧ ENABLED (Send(s) ∧ Send(t)))

Figure 9. CollisionAvoidance and NoCollisionAvoidance

• CollisionAvoidance − This temporal formula, shown in Figure 9, is true when
at most one task can send its message in a given slot. Thus, it ensures that the DoRiS
protocol avoids the occurrence of message collision. It is worth mentioning that in order
to produce behavioral traces for each checked property, we systematically ran the TLC
model-checker twice per property. First, checking the formula and then its contraposition.
The NoCollisionAvoidance temporal formula that appears in Figure 9 is the contraposi-
tion of predicate CollisionAvoidance.

• HardRingCorrectnesss − In this formula, shown in Figure 10, we were able
to check some properties regarding the hard ring. First, it is checked that no buffer
overflow occurs, as the size of the msg buffer is at most 3. In the second line, it is
asserted that whenever NextChip takes place, the action SendElem has been executed
Shared .chipCount times. It is worth noticing the use of an observer, namely History ,
which has a counter with elem as a field. This counter is reset at the beginning of every
cycle and is incremented when the action SendElem is true. Thus, at the end of each
chip, History .elem must be equal to Shared .chipCount if each task has sent its manda-
tory elementary messages. In other words, SendElem is periodically true. Recall that
we specified omission failures in the reception action (see Figure 6). This implies that
sending omission and crash failures were modeled. For instance, sending omission fail-
ure can be seen as reception failures at all nodes and crash failures are permanent sending
omission failures. Therefore, it was not necessary to check specific scenarios of message
sending omission nor task crash failures.

HardRingCorrectness
∆= ∧ ∀ s ∈ HardRing : 2(Len(HardState[hardID(s)].msg) ≤ 3)

∧ 2(ENABLED NextChip ⇒ History .elem = Shared .chipCount)

ReservationSafety
∆= 2∀ chip, j ∈ ServID : ∧ ENABLED ReseSend(HardServ [j])

∧ Shared .chipCount = chip

⇒ (HardState[j].res[chip] = j) ∧ (∀ i ∈ ServID \ {j} : HardState[i].res[chip] ∈ {j , − 1})

SoftRingFairness
∆= ∧ ∀ i ∈ ServID : 2(i ∈ Shared .soft

⇒ (SoftState[i].list 6= 〈〉 ⇒ 3(i = SoftState[i].token)))
∧23(∀ i ∈ ServID \ Failed : i ∈ Shared .soft ⇒ Len(SoftState[i].list) = 0)

Figure 10. HardRingCorrectness, ReservationSafety and SoftRingFairness

• ReservationSafety − This property, shown in Figure 10, asserts that when task
j has a reservation for some SR , all other tasks are aware either of this reservation or that
they have not reserved such a slot. It implies that two tasks cannot own a reservation for
the same slot. Along with the enabling predicate HardState[i].res [Shared .chipCount] =
i of the ReseSend action, the specification also implies that task i can only send a reser-
vation message in a SR that it has previously reserved.

• SoftRingFairness − This property, shown in Figure 10, asserts that all pro-
cesses will eventually receive the token (first line), and that its list of messages will even-
tually be exhausted. Should the list of messages of all processes in a cycle exceed the
available bandwidth capacity for the soft communication, TLC indicates out the violation
of the second line of the formula, as expected.

As can be seen, we were able to verify relevant properties of the DoRiS protocol. It
is interesting to note that this properties were verified taking into consideration omission
and crash failures.

5. Discussion
After the protocol was conceived [Regnier and Lima 2006], its formal specification was
derived. This former version relied on some specific hardware functionalities. For ex-
ample, the soft ring management was based on the capacity of the medium activity to be

sensed at any given time. Sensing idle periods on the medium was used to implement
an implicit token-passing scheme like in other protocols [Carreiro et al. 2003]. However,
it was noticed afterward that Ethernet network cards, providing such sensing capability,
were not easily available. Also, this approach would prevent extensions of the protocol for
wireless medium. Then, the specification was updated so that the token-passing scheme
would require that explicit messages be sent even when there is no application message
to transmitted. By model-checking this new version of DoRiS, it was noticed the high
overhead of this token management scheme before the implementation phase. Indeed,
this solution implied too many message receiving events. This motivated the protocol
specification described here, which has an adaptive token management scheme.

Another aspect worth mentioning is related to the verification of fault scenarios.
Fault occurrences were incorporated into the specification in incremental steps. This re-
quired the introduction of extra counters and predicates. However, due to the nature of
the TLA+ language, fault scenarios were specified and verified straightforwardly.

Although the protocol specification has given several insights to carry out its im-
plementation, it was not possible to use the specification straightway. Indeed, DoRiS was
implemented in a Linux-based real-time operating system [Regnier 2008] which has itself
a complex architecture. However, most functions of the protocol could be translated from
the specification and adapted into the operating system infrastructure.

6. Conclusions
A TLA+ specification of DoRiS, a new real-time communication protocol, have been
shown in this paper. DoRiS is designed for modern real-time systems, which require
predictability, fault tolerance and flexibility. The specification and its properties were
checked for several different scenarios. For this purpose, the TLA+ language was found
to provide satisfactory levels of abstraction and expressiveness.

From a software engineering perspective, the approach used to define DoRiS has
shown how one can benefit from formal methods. Indeed, using the TLA+ language
and its tools, we have carried out an interactive design methodology, where specification
and model-checking were performed during the definition of the protocol functions. The
implementation of DoRiS has been greatly improved by the specification presented here,
indicating the strength of the adopted approach.

One aspect that needs further research is regarding how one carries out the imple-
mentation of a specified protocol using an existing complex software, such an operating
system, as a basic infra-structure. A more automatic way for performing such a task is
needed. The development of DoRiS and its described formal specification can well serve
as a motivating case study for this field of research.

References
Barboza, F., Andrade, A., Silva, F. A., and Lima, G. (2006). Specification and verification

of the IEEE 802.11 medium access control and an analysis of its applicability to real-
time systems. In BSFM, volume 1, pages 9–26.

Carreiro, F. B., Fonseca, J. A., and Pedreiras, P. (2003). Virtual Token-Passing Ethernet -
VTPE. In Proc. FeT2003 5th IFAC Int. Conf. on Fieldbus Systems and their Applica-
tions, Portugal.

Clarke, E. M., Grumberg, O., and Peled, D. (1999). Model Checking. MIT Press.

Decotignie, J.-D. (2005). Ethernet-based real-time and industrial communications. Proc.
IEEE (Special issue on industrial communication systems), 93(6):1102–1117.

Hanssen, F., Mader, A., and Jansen, P. G. (2006). Verifying the distributed real-time net-
work protocol RTnet using UPPAAL. In 14th IEEE Int. Symp. on Modeling, Analysis,
and Simulation of Computer and Telecom. Systems. IEEE Computer Society Press.

Hanssen, F. T. Y. and Jansen, P. G. (2003). Real-time communication protocols: an
overview. Technical Report TR-CTIT-03-49, University of Twente, The Netherlands.

Henzinger, T., Manna, Z., and Pnueli, A. (1992). Temporal proof methodologies for real-
time systems. In Proc. of the 18th Annual Symposium on Principles of Programming
Languages, pages 353–366. ACM Press.

IEEE (2001). Information Technology - Telecommunications and Information exchange
between systems - Local and Metropolitan Area Networks specific requirements - part
3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access and
method Physical Layer Specifications. ISO/IEC 8802-3.

Johnson, J. E., Langworthy, D. E., Lamport, L., and Vogt, F. H. (2004). Formal specifica-
tion of a web services protocol. In Proc. of Web Services and Formal Methods, Pisa,
Italy.

Lamport, L. (2002). Specifying Systems: The TLA+ language and tools for hardware and
software engineers. Addison Wesley, 1st edition.

Lamport, L. and Melliar-Smith, M. (2005). Real-time model checking is really simple.
In Borrione, I. D. and Paul, W. J., editors, Correct Hardware Design and Verification
Methods, volume 3725 of LNCS, pages 162–175. Springer-Verlag.

Marau, R., Almeida, L., and Pedreiras, P. (2006). Enhancing real-time communication
over cots ethernet switches. In Proceeding of IEEE International Workshop on Factory
Communication Systems, pages 295–302.

Narayana, P., Chen, R., Zhao, Y., Chen, Y., Fu, Z., and Zhou, H. (2006). Automatic
Vulnerability Checking of IEEE 802.16 WiMAX Protocols through TLA+. In Proc. of
2nd IEEE Workshop on Secure Network Protocols. IEEE.

Regnier, P. (2008). Especificação formal, verificação e implementação de um protocolo
de comunicação determinista baseado em ethernet. Master’s thesis, UFBA, Salvador,
Brasil.

Regnier, P. and Lima, G. (2006). Deterministic integration of hard and soft real-time
communication over shared-ethernet. In Proc. of Workshop of Tempo Real, Curitíba,
Brazil.

Yu, Y., Manolios, P., and Lamport, L. (1999). Model checking TLA+ specifications. In
Pierre, I. L. and Kropf, T., editors, Correct Hardware Design and Verification Methods,
volume 1703 of Lecture Notes in Computer Science, pages 54–66, Berlin, Heidelberg,
New York. 10th IFIP wg 10.5 Advanced Research Working Conf., CHARME ’99,
Springer-Verlag.

